Skip to main content
Log in

Molecular Characterization and Potential Synthetic Applications of GH1 β-Glucosidase from Higher Termite Microcerotermes annandalei

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A novel β-glucosidase from higher termite Microcerotermes annandalei (MaBG) was obtained via a screening method targeting β-glucosidases with increased activities in the presence of glucose. The purified natural MaBG showed a subunit molecular weight of 55 kDa and existed in a native form as a dimer without any glycosylation. Gene-specific primers designed from its partial amino acid sequences were used to amplify the corresponding 1,419-bp coding sequence of MaBG which encodes a 472-amino acid glycoside hydrolase family 1 (GH1) β-glucosidase. When expressed in Komagataella pastoris, the recombinant MaBG appeared as a ~ 55-kDa protein without glycosylation modifications. Kinetic parameters as well as the lack of secretion signal suggested that MaBG is an intracellular enzyme and not involved in cellulolysis. The hydrolytic activities of MaBG were enhanced in the presence of up to 3.5-4.5 M glucose, partly due to its strong transglucosylation activity, which suggests its applicability in biosynthetic processes. The potential synthetic activities of the recombinant MaBG were demonstrated in the synthesis of para-nitrophenyl-β-D-gentiobioside via transglucosylation and octyl glucoside via reverse hydrolysis. The information obtained from this study has broadened our insight into the functional characteristics of this variant of termite GH1 β-glucosidase and its applications in bioconversion and biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ferrara, M. C., Cobucci-Ponzano, B., Carpentieri, A., Henrissat, B., Rossi, M., Amoresano, A., & Moracci, M. (2014). The identification and molecular characterization of the first archaeal bifunctional exo-β-glucosidase/N-acetyl-β-glucosaminidase demonstrate that family GH116 is made of three functionally distinct subfamilies. Biochimica et Biophysica Acta - General Subjects, 1840(1), 367–377.

    Article  CAS  Google Scholar 

  2. Ketudat Cairns, J. R., & Esen, A. (2010). β-Glucosidases. Cellular and Molecular Life Sciences, 67(20), 3389–3405.

    Article  CAS  Google Scholar 

  3. Kumar, R., Singh, S., & Singh, O. V. (2008). Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. Journal of Industrial Microbiology and Biotechnology, 35(5), 377–391.

    Article  CAS  Google Scholar 

  4. Singhania, R. R., Patel, A. K., Sukumaran, R. K., Larroche, C., & Pandey, A. (2013). Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresource Technology, 127, 500–507.

    Article  CAS  Google Scholar 

  5. Muraki, E., Chiba, H., Taketani, K., Hoshino, S., Tsuge, N., Tsunoda, N., & Kasono, K. (2012). Fenugreek with reduced bitterness prevents diet-induced metabolic disorders in rats. Lipids in Health and Disease, 11(1), 58.

    Article  CAS  Google Scholar 

  6. Ni, H., Chen, F., Cai, H., Xiao, A., You, Q., & Lu, Y. (2012). Characterization and preparation of Aspergillus niger naringinase for debittering citrus juice. Journal of Food Science, 77(1), C1–C7.

    Article  CAS  Google Scholar 

  7. Gueguen, Y., Chemardin, P., Janbon, G., Arnaud, A., & Galzy, P. (1996). A very efficient β-glucosidase catalyst for the hydrolysis of flavor precursors of wines and fruit juices. Journal of Agricultural and Food Chemistry, 44(8), 2336–2340.

    Article  CAS  Google Scholar 

  8. Bhatia, Y., Mishra, S., & Bisaria, V. S. (2002). Microbial beta-glucosidases: cloning, properties, and applications. Critical Reviews in Biotechnology, 22(4), 375–407.

    Article  CAS  Google Scholar 

  9. Jabbour, D., Klippel, B., & Antranikian, G. (2011). A novel thermostable and glucose-tolerant β-glucosidase from Fervidobacterium islandicum. Applied Microbiology and Biotechnology, 93, 1947–1956.

    Article  Google Scholar 

  10. Pei, J., Pang, Q., Zhao, L., Fan, S., & Shi, H. (2012). Thermoanaerobacterium thermosaccharolyticum β-glucosidase: a glucose-tolerant enzyme with high specific activity for cellobiose. Biotechnology for Biofuels, 5(1), 31.

    Article  CAS  Google Scholar 

  11. Zhao, L., Xie, J., Zhang, X., Cao, F., & Pei, J. (2013). Overexpression and characterization of a glucose-tolerant β-glucosidase from Thermotoga thermarum DSM 5069T with high catalytic efficiency of ginsenoside Rb1 to Rd. Journal of Molecular Catalysis B: Enzymatic, 95, 62–69.

    Article  CAS  Google Scholar 

  12. Beitel, S. M., & Knob, A. (2013). Penicillium miczynskii β-glucosidase: a glucose-tolerant enzyme produced using pineapple peel as substrate. Industrial Biotechnology, 9(5), 293–300.

    Article  CAS  Google Scholar 

  13. Benoliel, B., Poças-Fonseca, M. J., Torres, F. A. G., & de Moraes, L. M. P. (2009). Expression of a glucose-tolerant β-glucosidase from Humicola grisea var. thermoidea in Saccharomyces cerevisiae. Applied Biochemistry and Biotechnology, 160, 2036–2044.

    Article  Google Scholar 

  14. Günata, Z., & Vallier, M.-J. (1999). Production of a highly glucose-tolerant extracellular β-glucosidase by three Aspergillus strains. Biotechnology Letters, 21(3), 219–223.

    Article  Google Scholar 

  15. Oriente, A., Tramontina, R., de Andrades, D., Henn, C., Silva, J. L. C., Simão, R. C. G., Maller, A., Polizeli, M. D. L. T. M., & Kadowaki, M. K. (2015). Characterization of a novel Aspergillus niger beta-glucosidase tolerant to saccharification of lignocellulosic biomass products and fermentation inhibitors. Chemical Papers, 69, 1050–1057.

    Article  CAS  Google Scholar 

  16. Ramani, G., Meera, B., Vanitha, C., Rajendhran, J., & Gunasekaran, P. (2015). Molecular cloning and expression of thermostable glucose-tolerant β-glucosidase of Penicillium funiculosum NCL1 in Pichia pastoris and its characterization. Journal of Industrial Microbiology and Biotechnology, 42(4), 553–565.

    Article  CAS  Google Scholar 

  17. Riou, C., Salmon, J. M., Vallier, M. J., Gunata, Z., & Barre, P. (1998). Purification, characterization, and substrate specificity of a novel highly glucose-tolerant beta-glucosidase from Aspergillus oryzae. Applied and Environmental Microbiology, 64(10), 3607–3614.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Saha, B. C., & Bothast, R. J. (1996). Production, purification, and characterization of a highly glucose-tolerant novel beta-glucosidase from Candida peltata. Applied and Environmental Microbiology, 62(9), 3165–3170.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Yan, T. R., & Lin, C. L. (1997). Purification and characterization of a glucose-tolerant beta-glucosidase from Aspergillus niger CCRC 31494. Bioscience Biotechnology and Biochemistry, 61(6), 965–970.

    Article  CAS  Google Scholar 

  20. Zanoelo, F. F., Polizeli Mde, L., Terenzi, H. F., & Jorge, J. A. (2004). Beta-glucosidase activity from the thermophilic fungus Scytalidium thermophilum is stimulated by glucose and xylose. FEMS Microbiology Letters, 240(2), 137–143.

    Article  CAS  Google Scholar 

  21. Chen, L., Li, N., & Zong, M.-H. (2012). A glucose-tolerant β-glucosidase from Prunus domestica seeds: purification and characterization. Process Biochemistry, 47(1), 127–132.

    Article  CAS  Google Scholar 

  22. Cao, L.-C., Wang, Z.-J., Ren, G.-H., Kong, W., Li, L., Xie, W., & Liu, Y.-H. (2015). Engineering a novel glucose-tolerant β-glucosidase as supplementation to enhance the hydrolysis of sugarcane bagasse at high glucose concentration. Biotechnology for Biofuels, 8(1), 202.

    Article  Google Scholar 

  23. Fang, Z., Fang, W., Liu, J., Hong, Y., Peng, H., Zhang, X., Sun, B., & Xiao, Y. (2010). Cloning and characterization of a beta-glucosidase from marine microbial metagenome with excellent glucose tolerance. Journal of Microbiology and Biotechnology, 20(9), 1351–1358.

    Article  CAS  Google Scholar 

  24. Li, G., Jiang, Y., Fan, X.-J., & Liu, Y.-H. (2012). Molecular cloning and characterization of a novel β-glucosidase with high hydrolyzing ability for soybean isoflavone glycosides and glucose-tolerance from soil metagenomic library. Bioresource Technology, 123, 15–22.

    Article  CAS  Google Scholar 

  25. Lu, J., Du, L., Wei, Y., Hu, Y., & Huang, R. (2013). Expression and characterization of a novel highly glucose-tolerant β-glucosidase from a soil metagenome. Acta Biochimica et Biophysica Sinica, 45(8), 664–673.

    Article  CAS  Google Scholar 

  26. Kara, H. E., Turan, Y., Er, A., Acar, M., Tumay, S., & Sinan, S. (2014). Purification and characterization of beta-glucosidase from greater wax moth Galleria mellonella L. (Lepidoptera: Pyralidae). Archives of Insect Biochemistry and Physiology, 86(4), 209–219.

    Article  CAS  Google Scholar 

  27. Uchima, C. A., Tokuda, G., Watanabe, H., Kitamoto, K., & Arioka, M. (2011). Heterologous expression and characterization of a glucose-stimulated β-glucosidase from the termite Neotermes koshunensis in Aspergillus oryzae. Applied Microbiology and Biotechnology, 89(6), 1761–1771.

    Article  CAS  Google Scholar 

  28. Uchima, C. A., Tokuda, G., Watanabe, H., Kitamoto, K., & Arioka, M. (2012). Heterologous expression in Pichia pastoris and characterization of an endogenous thermostable and high-glucose-tolerant beta-glucosidase from the termite Nasutitermes takasagoensis. Applied and Environmental Microbiology, 78(12), 4288–4293.

    Article  CAS  Google Scholar 

  29. Uchima, C. A., Gaku, T., Hirofumi, W., Katsuhiko, K., & Manabu, A. (2013). A novel glucose-tolerant β-glucosidase from the salivary gland of the termite Nasutitermes takasagoensis. Journal of General and Applied Microbiology, 59(2), 141–145.

    Article  CAS  Google Scholar 

  30. Ohkuma, M. (2003). Termite symbiotic systems: efficient bio-recycling of lignocellulose. Applied Microbiology and Biotechnology, 61(1), 1–9.

    Article  CAS  Google Scholar 

  31. Bignell, D. E., Slaytor, M., Veivers, P. C., Muhlemann, R., & Leuthold, R. H. (1994). Functions of symbiotic fungus gardens in higher termites of the genus Macrotermes: evidence against the acquired enzyme hypothesis. Acta Microbiologica et Immunologica Hungarica, 41(4), 391–401.

    CAS  PubMed  Google Scholar 

  32. Feng, T., Liu, H., Xu, Q., Sun, J., & Shi, H. (2015). Identification and characterization of two endogenous β-glucosidases from the termite Coptotermes formosanus. Applied Biochemistry and Biotechnology, 176(7), 2039–2052.

    Article  CAS  Google Scholar 

  33. Jeng, W.-Y., Wang, N.-C., Lin, M.-H., Lin, C.-T., Liaw, Y.-C., Chang, W.-J., Liu, C. I., Liang, P. H., & Wang, A. H. (2011). Structural and functional analysis of three β-glucosidases from bacterium Clostridium cellulovorans, fungus Trichoderma reesei and termite Neotermes koshunensis. Journal of Structural Biology, 173(1), 46–56.

    Article  CAS  Google Scholar 

  34. Scharf, M. E., Kovaleva, E. S., Jadhao, S., Campbell, J. H., Buchman, G. W., & Boucias, D. G. (2010). Functional and translational analyses of a beta-glucosidase gene (glycosyl hydrolase family 1) isolated from the gut of the lower termite Reticulitermes flavipes. Insect Biochemistry and Molecular Biology, 40(8), 611–620.

    Article  CAS  Google Scholar 

  35. Wang, Q., Qian, C., Zhang, X.-Z., Liu, N., Yan, X., & Zhou, Z. (2012). Characterization of a novel thermostable β-glucosidase from a metagenomic library of termite gut. Enzyme and Microbial Technology, 51(6-7), 319–324.

    Article  CAS  Google Scholar 

  36. Wu, Y., Chi, S., Yun, C., Shen, Y., Tokuda, G., & Ni, J. (2012). Molecular cloning and characterization of an endogenous digestive beta-glucosidase from the midgut of the fungus-growing termite Macrotermes barneyi. Insect Molecular Biology, 21(6), 604–614.

    Article  Google Scholar 

  37. Zhang, D., Allen, A. B., & Lax, A. R. (2012). Functional analyses of the digestive beta-glucosidase of Formosan subterranean termites (Coptotermes formosanus). Journal of Insect Physiology, 58(1), 205–210.

    Article  CAS  Google Scholar 

  38. Chuankhayan, P., Rimlumduan, T., Tantanuch, W., Mothong, N., Kongsaeree, P. T., Metheenukul, P., Svasti, J., Jensen, O. N., & Cairns, J. R. K. (2007). Functional and structural differences between isoflavonoid β-glycosidases from Dalbergia sp. Archives of Biochemistry and Biophysics, 468(2), 205–216.

    Article  CAS  Google Scholar 

  39. Srisomsap, C., Sawangareetrakul, P., Subhasitanont, P., Chokchaichamnankit, D., Chiablaem, K., Bhudhisawasdi, V., Wongkham, S., & Svasti, J. (2010). Proteomic studies of cholangiocarcinoma and hepatocellular carcinoma cell secretomes. Journal of Biomedicine and Biotechnology, 2010, 437143.

    Article  Google Scholar 

  40. Perkins, D. N., Pappin, D. J. C., Creasy, D. M., & Cottrell, J. S. (1999). Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis, 20(18), 3551–3567.

    Article  CAS  Google Scholar 

  41. Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. In J. M. Walker (Ed.), The proteomics protocols handbook (pp. 571–607). New York: Humana.

    Chapter  Google Scholar 

  42. Petersen, T. N., Brunak, S., von Heijne, G., & Nielsen, H. (2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods, 8(10), 785–786.

    Article  CAS  Google Scholar 

  43. Gupta, R., Jung, E., & Brunak, S. (2004) Prediction of N-glycosylation sites in human proteins. Available from: http://www.cbs.dtu.dk/services/NetNGlyc/. Accessed February 24, 2017.

  44. Steentoft, C., Vakhrushev, S. Y., Joshi, H. J., Kong, Y., Vester-Christensen, M. B., Schjoldager, K. T., Lavrsen, K., Dabelsteen, S., Pedersen, N. B., Marcos-Silva, L., Gupta, R., Bennett, E. P., Mandel, U., Brunak, S., Wandall, H. H., Levery, S. B., & Clausen, H. (2013). Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO Journal, 32(10), 1478–1488.

    Article  CAS  Google Scholar 

  45. Altschul, S. F., Wootton, J. C., Gertz, E. M., Agarwala, R., Morgulis, A., Schaffer, A. A., & Yu, Y. K. (2005). Protein database searches using compositionally adjusted substitution matrices. FEBS Journal, 272(20), 5101–5109.

    Article  CAS  Google Scholar 

  46. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725–2729.

    Article  CAS  Google Scholar 

  47. Zuckerkandl, E., & Pauling, L. (1965). Evolutionary divergence and convergence in proteins. In V. Bryson & H. J. Vogel (Eds.), Evolving genes and proteins (pp. 97–166). New York: Academic.

    Chapter  Google Scholar 

  48. Toonkool, P., Metheenukul, P., Sujiwattanarat, P., Paiboon, P., Tongtubtim, N., Ketudat-Cairns, M., Ketudat-Cairns, J., & Svasti, J. (2006). Expression and purification of dalcochinase, a β-glucosidase from Dalbergia cochinchinensis Pierre, in yeast and bacterial hosts. Protein Expression and Purification, 48(2), 195–204.

    Article  CAS  Google Scholar 

  49. Svasti, J., Phongsak, T., & Sarnthima, R. (2003). Transglucosylation of tertiary alcohols using cassava β-glucosidase. Biochemical and Biophysical Research Communications, 305(3), 470–475.

    Article  CAS  Google Scholar 

  50. Jeng, W.-Y., Wang, N.-C., Lin, C.-T., Chang, W.-J., Liu, C.-I., & Wang, A. H. J. (2012). High-resolution structures of Neotermes koshunensis β-glucosidase mutants provide insights into the catalytic mechanism and the synthesis of glucoconjugates. Acta Crystallographica Section D, 68(7), 829–838.

    Article  CAS  Google Scholar 

  51. Zhang, D., Lax, A. R., Henrissat, B., Coutinho, P., Katiya, N., Nierman, W. C., & Fedorova, N. (2012). Carbohydrate-active enzymes revealed in Coptotermes formosanus (Isoptera: Rhinotermitidae) transcriptome. Insect Molecular Biology, 21(2), 235–245.

    Article  Google Scholar 

  52. Kouame, L. P., Kouame, F. A., Niamke, S. L., Faulet, B. M., & Kamenan, A. (2005). Biochemical and catalytic properties of two β-glycosidases purified from workers of the termite Macrotermes subhyalinus (Isoptera: Termitidae). International Journal of Tropical Insect Science, 25, 103–113.

    Article  CAS  Google Scholar 

  53. Ni, J., Tokuda, G., Takehara, M., & Watanabe, H. (2007). Heterologous expression and enzymatic characterization of β-glucosidase from the drywood-eating termite, Neotermes koshunensis. Applied Entomology and Zoology, 42(3), 457–463.

    Article  CAS  Google Scholar 

  54. Tokuda, G., Saito, H., & Watanabe, H. (2002). A digestive β-glucosidase from the salivary glands of the termite, Neotermes koshunensis (Shiraki): distribution, characterization and isolation of its precursor cDNA by 5′- and 3′-RACE amplifications with degenerate primers. Insect Biochemistry and Molecular Biology, 32(12), 1681–1689.

    Article  CAS  Google Scholar 

  55. Tokuda, G., Miyagi, M., Makiya, H., Watanabe, H., & Arakawa, G. (2009). Digestive β-glucosidases from the wood-feeding higher termite, Nasutitermes takasagoensis: intestinal distribution, molecular characterization, and alteration in sites of expression. Insect Biochemistry and Molecular Biology, 39(12), 931–937.

    Article  CAS  Google Scholar 

  56. Shikita, M., Fahey, J. W., Golden, T. R., Holtzclaw, W. D., & Talalay, P. (1999). An unusual case of ‘uncompetitive activation’ by ascorbic acid: purification and kinetic properties of a myrosinase from Raphanus sativus seedlings. Biochemical Journal, 341, 725–732.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Cornette, R., Farine, J.-P., Abed-Viellard, D., Quennedey, B., & Brossut, R. (2003). Molecular characterization of a male-specific glycosyl hydrolase, Lma-p72, secreted on to the abdominal surface of the Madeira cockroach Leucophaea maderae (Blaberidae, Oxyhaloinae). Biochemical Journal, 372(2), 535–541.

    Article  CAS  Google Scholar 

  58. Pengthaisong, S., Chen, C.-F., Withers, S. G., Kuaprasert, B., & Ketudat Cairns, J. R. (2012). Rice BGlu1 glycosynthase and wild type transglycosylation activities distinguished by cyclophellitol inhibition. Carbohydrate Research, 352, 51–59.

    Article  CAS  Google Scholar 

  59. McMahon, L. G., Nakano, H., Levy, M. D., & Gregory, J. F. (1997). Cytosolic pyridoxine-β-D-glucoside hydrolase from porcine jejunal mucosa: purification, properties, and comparison with broad specificity β-glucosidase. Journal of Biological Chemistry, 272(51), 32025–32033.

    Article  CAS  Google Scholar 

  60. Xu, J., Zhao, G., Kou, Y., Zhang, W., Zhou, Q., Chen, G., & Liu, W. (2014). Intracellular β-glucosidases CEL1a and CEL1b are essential for cellulase induction on lactose in Trichoderma reesei. Eukaryotic Cell, 13(8), 1001–1013.

    Article  Google Scholar 

  61. Chen, M., Qin, Y., Cao, Q., Liu, G., Li, J., Li, Z., Zhao, J., & Qu, Y. (2013). Promotion of extracellular lignocellulolytic enzymes production by restraining the intracellular β-glucosidase in Penicillium decumbens. Bioresource Technology, 137, 33–40.

    Article  CAS  Google Scholar 

  62. Vabulas, R. M., Raychaudhuri, S., Hayer-Hartl, M., & Hartl, F. U. (2010). Protein folding in the cytoplasm and the heat shock response. Cold Spring Harbor Perspectives in Biology, 2, a004390–a004390.

    Article  CAS  Google Scholar 

  63. Seidle, H. F., & Huber, R. E. (2005). Transglucosidic reactions of the Aspergillus niger family 3 β-glucosidase: qualitative and quantitative analyses and evidence that the transglucosidic rate is independent of pH. Archives of Biochemistry and Biophysics, 436(2), 254–264.

    Article  CAS  Google Scholar 

  64. Thongpoo, P., Srisomsap, C., Chokchaichamnankit, D., Kitpreechavanich, V., Svasti, J., & Kongsaeree, P. T. (2014). Purification and characterization of three β-glycosidases exhibiting high glucose tolerance from Aspergillus niger ASKU28. Bioscience, Biotechnology, and Biochemistry, 78(7), 1167–1176.

    Article  CAS  Google Scholar 

  65. Uchiyama, T., Miyazaki, K., & Yaoi, K. (2013). Characterization of a novel β-glucosidase from a compost microbial metagenome with strong transglycosylation activity. Journal of Biological Chemistry, 288(25), 18325–18334.

    Article  CAS  Google Scholar 

  66. Hommalai, G., Chaiyen, P., & Svasti, J. (2005). Studies on the transglucosylation reactions of cassava and Thai rosewood β-glucosidases using 2-deoxy-2-fluoro-glycosyl-enzyme intermediates. Archives of Biochemistry and Biophysics, 442(1), 11–20.

    Article  CAS  Google Scholar 

  67. Guo, D., Xu, Y., Kang, Y., Han, S., & Zheng, S. (2016). Synthesis of octyl-β-d-glucopyranoside catalyzed by Thai rosewood β-glucosidase-displaying Pichia pastoris in an aqueous/organic two-phase system. Enzyme and Microbial Technology, 85, 90–97.

    Article  CAS  Google Scholar 

  68. Mladenoska, I. (2016). Synthesis of octyl-β-glucoside catalyzed by almond β-glucosidase in unconventional reaction media. Food Technology and Biotechnology, 54(2), 211–216.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors especially thank Dr. Nonlawat Boonyalai, Kasetsart University, Thailand, for kindly providing the gel filtration calibration kit and Blue Dextran 2000 and Dr. Suraphon Visetson, Kasetsart University, Thailand, for helpful advice.

Funding

The project was partly supported by grants from the Thailand Research Fund (MRG-WII525S034), the Higher Education Research Promotion and National Research University Project of Thailand, Kasetsart University Research and Development Institute (V-T(D)47.53), and the Faculty of Science, Kasetsart University (ScRF-S11/2553). W.J. and E.S. are recipients of the MAG Window II scholarship from the Thailand Research Fund and the Ph.D. scholarship from the Graduate School, Kasetsart University, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prachumporn T. Kongsaeree.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethical Statement

This article does not describe any studies on human participants or animals performed by any of the authors.

Electronic Supplementary Material

ESM 1

(DOCX 809 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arthornthurasuk, S., Jenkhetkan, W., Suwan, E. et al. Molecular Characterization and Potential Synthetic Applications of GH1 β-Glucosidase from Higher Termite Microcerotermes annandalei. Appl Biochem Biotechnol 186, 877–894 (2018). https://doi.org/10.1007/s12010-018-2781-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2781-8

Keywords

Navigation