Skip to main content
Log in

Isolation and Molecular Characterization of Thermostable Phytase from Bacillus subtilis (BSPhyARRMK33)

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The thermostable phytase gene was isolated from Bacillus subtilis ARRMK33 (BsPhyARRMK33). The gene has an ORF of 1152 bp and that encodes a protein of 383 amino acids. Sequence analysis showed high homology with Bacillus sp. phytase proteins, but no similarity was found with other phytases. SDS-PAGE analysis exhibited a predicted molecular mass of 42 kDa. Homology modeling of BsPhyARRMK33 protein based on Bacillus amyloliquefaciens crystal structure disclosed its β-propeller structure. BsPhyARRMK33 recombinant plasmid in pET-28a(+) was expressed in Rosetta gami B DE3 cells and the maximum phytase activity 15.3 U mg−1 obtained. The enzyme exhibits high thermostability at various temperatures and broad pH ranges. The recombinant protein retained 74 % of its original activity after incubation at 95 °C for 10 min. In the presence of Ca2+, the recombinant phytase activity was maximal where as it was inhibited by EDTA. The optimal pH and temperature for the recombinant phytase activity is achieved at 7.0 and 55 °C, respectively. Thermostable nature and wide range of pH are promising features of recombinant BsPhyARRMK33 protein that may be employed as an efficient alternative to commercially known phytases and thereby alleviate environmental eutrophication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yao, M. Z., Wang, X., Wang, W., Fu, Y. J., & Liang, A. H. (2013). Improving the thermostability of Escherichia coli phytase, appA, by enhancement of glycosylation. Biotechnology Letters, 35(10), 1669–1676.

    Article  CAS  Google Scholar 

  2. Kumar, V., Sinha, A. K., Makkar, H. P., & Becker, K. (2010). Dietary roles of phytate and phytase in human nutrition: a review. Food Chemistry, 120, 945–959.

    Article  CAS  Google Scholar 

  3. Hmida-Sayari, A., Elgharbi, F., Farhat, A., Rekik, H., Blondeau, K., & Bejar, S. (2014). Overexpression and biochemical characterization of a thermostable phytase from bacillus subtilis US417 in Pichia pastoris. Molecular Biotechnology, 1–10.

  4. Suhairin, A., Manap, A., Yazid, M., Hussin, M., Shobirin, A., & Mustafa, S. (2010). Phytase: application in food industry. International Food Research Journal, 17, 13–21.

    Google Scholar 

  5. Ali, N., Paul, S., Gayen, D., Sarkar, S. N., Datta, K., & Datta, S. K. (2013). Development of low phytate rice by RNAi mediated seed-specific silencing of inositol 1, 3, 4, 5, 6-pentakisphosphate 2-kinase gene (IPK1). PLoS One, 8(7), e68161.

    Article  CAS  Google Scholar 

  6. Singh, B., Singh, D., & Sharma, K. K. (2013). Microbial phytases in skirmishing and management of environmental phosphorus pollution. In Biotechnology for environmental management and resource recovery (pp. 239–260). India: Springer.

    Google Scholar 

  7. Brinch-Pedersen, H., Sorensen, L. D., & Holm, P. B. (2002). Engineering crop plants: getting a handle on phosphate. Trends in Plant Science, 7, 118–125.

    Article  CAS  Google Scholar 

  8. Chinreddy, S. Reddy., Vani, K., Pandey, S., Gupta, G., Lakshmi, M. V., Reddy, P. C. O., Kaul, T., (2013). Manipulating microbial phytases for heterologous expression in crops for sustainable nutrition. Annals of Plant Sciences Review ISSN: 2287-688X

  9. Yoon, S. M., Kim, S. Y., Li, K. F., Yoon, B. H., Choe, S., & Kuo, M. M. (2011). Transgenic microalgae expressing Escherichia coli AppA phytase as feed additive to reduce phytate excretion in the manure of young broiler chicks. Applied Microbiology and Biotechnology, 91, 553–563.

    Article  CAS  Google Scholar 

  10. Yao, M. Z., Zhang, Y. H., Lu, W. L., Hu, M. Q., Wang, W., & Liang, A. H. (2012). Phytases: crystal structures, protein engineering and potential biotechnological applications. Journal of Applied Microbiology, 112(1), 1–14.

    Article  CAS  Google Scholar 

  11. Lucca, P., Hurrell, R., & Potrykus, I. (2001). Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains. Theoretical and Applied Genetics, 102, 392–397.

    Article  CAS  Google Scholar 

  12. Hong, Y. F., Liu, C. Y., Cheng, K. J., Hour, A. L., Chan, M. T., Tseng, T. H., & Yu, S. M. (2008). The sweet potato sporamin promoter confers high-level phytase expression and improves organic phosphorus acquisition and tuber yield of transgenic potato. Plant Molecular Biology, 67(4), 347–361.

    Article  CAS  Google Scholar 

  13. Tran, T. T., Mamo, G., Mattiasson, B., & Hatti-Kaul, R. (2010). A thermostable phytase from Bacillus sp. MD2: cloning, expression and high-level production in Escherichia coli. Journal of Industrial Microbiology & Biotechnology, 37, 279–287.

    Article  CAS  Google Scholar 

  14. Hong, S. W., Chu, I. H., & Chung, K. S. (2011). Purification and biochemical characterization of thermostable phytase from newly isolated Bacillus subtilis CF92. Journal of the Korean Society for Applied Biological Chemistry, 54(1), 89–94.

    Article  CAS  Google Scholar 

  15. Kammoun, R., Farhat, A., Chouayekh, H., Bouchaala, K., & Bejar, S. (2012). Phytase production by Bacillus subtilis US417 in submerged and solid state fermentations. Annals of Microbiology, 62(1), 155–164.

    Article  CAS  Google Scholar 

  16. Farhat-Khemakhem, A., Farhat, M. B., Boukhris, I., Bejar, W., Bouchaala, K., Kammoun, R., & Chouayekh, H. (2012). Heterologous expression and optimization using experimental designs allowed highly efficient production of the PHY US417 phytase in Bacillus subtilis 168. AMB Express, 2(1), 1–11.

    Article  Google Scholar 

  17. Rao, D. E. C. S., Rao, K. V., Reddy, T. P., & Reddy, V. D. (2009). Molecular characterization, physicochemical properties, known and potential applications of phytases: an overview. Critical Reviews in Biotechnology, 29(2), 182–198.

    Article  CAS  Google Scholar 

  18. Miksch, G., Kleist, S., Friehs, K., & Flaschel, E. (2002). Overexpression of the phytase from Escherichia coli and itsextracellular production in bioreactors. Applied Microbiology and Biotechnology, 59, 85–694.

    Article  Google Scholar 

  19. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., & Struhl, K. (1993). Current protocols in molecular biology, Vol: 1. USA: Geene Publishing Associates and John Wiley & Sons.

    Google Scholar 

  20. Arnold, K., Bordoli, L., Kopp, J., & Schwede, T. (2006). The SWISS-MODEL workspace: a web based environment for protein structure homology modeling. Bioinformatics, 22, 195–201.

    Article  CAS  Google Scholar 

  21. Bradford, M. M. (1976). A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  22. Choi, Y. M., Suh, H. J., & Kim, J. M. (2001). Purification and properties of extracellular phytase from Bacillus sp. KHU-10. Journal of Protein Chemistry, 20, 287–292.

    Article  CAS  Google Scholar 

  23. Ha, N. C., Oh, B. C., Shin, S., Kim, H. J., Oh, T. K., Kim, Y. O., & Oh, B. H. (2000). Crystal structures of a novel, thermostable phytase in partially and fully calcium-loaded states. Nature Structural & Molecular Biology, 7, 147–153.

    Article  CAS  Google Scholar 

  24. Lei, X. G., Weaver, J. D., Mullaney, E., Ullah, A. H., & Azain, M. J. (2013). Phytase, a new life for an “old” enzyme. Annual Review of Animal Biosciences, 1, 283–309.

    Article  Google Scholar 

  25. Pen, J., Venvoerd, T. C., van Paridon, P. A., Beudeker, R. F., VandenElzen, P. J. M., Geerse, K., van der Klis, J. D., Versteegh, A. J., van Ooyen, A. J. J., & Hoekema, A. (1993). Phytase-containing transgenic seeds as a nove1 feed additive for improved phosphorus utilization. Biotechnology, 11, 811–814.

    Article  CAS  Google Scholar 

  26. Rao, D. E. C. S., Rao, K. V., & Reddy, V. D. (2008). Cloning and expression of Bacillus phytase gene (phy) in Escherichia coli and recovery of active enzyme from the inclusion bodies. Journal of Applied Microbiology, 4, 1128–1137.

    Article  Google Scholar 

  27. Elkhalil, E. A. I., Manner, K., Borriss, R., & Simon, O. (2007). In vitro and in vivo characteristics of bacterial phytases and their efficacy in broiler chickens. British Poultry Science, 48, 64–70.

    Article  CAS  Google Scholar 

  28. Oh, B. C., Chang, B. S., & Park, K. H. (2001). Calcium-dependent catalytic activity of a novel phytase from Bacillus amyloliquefaciens DS11. Biochemistry, 40, 9669–9676.

    Article  CAS  Google Scholar 

  29. Esteve-Garcia, E., Perez-Vendrell, A. M., & Broz, J. (2005). Phosphorus equivalence of a Consensus phytase produced by Hansenula polymorpha in diets for young turkeys. Archives of Animal Nutrition, 59, 53–59.

    Article  CAS  Google Scholar 

  30. Kim, D. H., Oh, B. C., Choi, W. C., Lee, J. K., & Oh, T. K. (1999). Enzymatic evaluation of Bacillus amyloliquefaciens phytase as a feed additive. Biotechnology Letters, 21, 925–927.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the ICGEB, New Delhi, for providing support and facilities to carry out the research. The authors acknowledge the award of Senior Research Fellowship to M. Manna and Research Associateship to V. M. M. Achary by CSIR and DBT, India, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chinreddy Subramanyam Reddy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, C.S., Achary, V.M.M., Manna, M. et al. Isolation and Molecular Characterization of Thermostable Phytase from Bacillus subtilis (BSPhyARRMK33). Appl Biochem Biotechnol 175, 3058–3067 (2015). https://doi.org/10.1007/s12010-015-1487-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1487-4

Keywords

Navigation