Skip to main content
Log in

Ex Situ Conservation of Phyllanthus fraternus Webster and Evaluation of Genetic Fidelity in Regenerates Using DNA-Based Molecular Marker

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Germplasm storage of Phyllanthus fraternus by using synseed technology has been optimized. Synseeds were prepared from nodal segments taken from in vitro-grown plantlets. An encapsulation matrix of 3 % sodium alginate and 100 mM calcium chloride with polymerization duration up to 15 min was found most suitable for synseed formation. Maximum plantlet conversion (92.5 ± 2.5 %) was obtained on a growth regulator-free ½-strength solid Murashige and Skoog (MS) medium. Multiple shoot proliferation was optimum on a ½ MS medium containing 0.5 mg/l 6-benzylaminopurine (BAP). Shoots were subjected to rooting on MS media containing 1 mg/l α-naphthaleneacetic acid (NAA) and acclimatized successfully. Encapsulated nodal segments can be stored for up to 90 days with a survival frequency of 47.33 %. The clonal fidelity of synseed-derived plantlets was also assessed and compared with that of the mother plant using rapid amplified polymorphic DNA and inter-simple sequence repeat analysis. No changes in molecular profiles were observed among the synseed-derived plantlets and mother plant, which confirms the genetic stability of regenerates. This synseed production protocol could be useful for in vitro multiplication, short-term storage, and exchange of germplasm of this important antiviral and hepatoprotective plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BAP:

6-Benzylaminopurine

NAA:

α-Naphthaleneacetic acid

MS:

Murashige and Skoog

RAPD:

Random amplified polymorphic DNA

ISSR:

Inter-simple sequence repeat analysis

References

  1. Abedin, S., Mossa, J.S., AI-Said, M.S., & AI-Yahya, M.A. (2001). In: S.A. Chaudhary (Ed.), Flora of kingdom of Saudi Arabia (p. 298). Saudi Arabia: National Agriculture and Water Research Centre Riyadh

  2. Calixto, J. B., Santos, A. R. S., Cechinel, F. V., & Yunes, R. A. (1998). A review of the plants of the genus Phyllanthus: their chemistry, pharmacology and therapeutic potential. Medicinal Research Review, 4, 225–258.

    Article  Google Scholar 

  3. Banu, S., & Handique, P. J. (2003). Journal of Tropical Medicinal Plant, 4, 109–113.

    Google Scholar 

  4. Rajasubramaniam, S., & Pardha Saradhi, P. (2004). Plant Cell Reports, 13, 619–622.

    Google Scholar 

  5. Hassan, A., & Khatun, R. (2011). Bangladesh Journal of Scientific and Industrial Research, 46, 205–210.

    Article  Google Scholar 

  6. Rajasubramaniam, S., & Pardha Saradhi, P. (2007). Industrial Crops and Products, 6, 35–40.

    Article  Google Scholar 

  7. Upadhyay, R., Tiwari, K. N., & Singh, K. (2013). Applied Biochemistry and Biotechnology, 169, 2303–2314.

    Article  CAS  Google Scholar 

  8. Withers, L. A. (1983). Germplasm storage in plant biotechnology. In S. H. Mantell & H. Smith (Eds.), Plant biotechnology (pp. 187–218). UK: Cambridge University Press.

    Google Scholar 

  9. Rao, N. K. (2004). African Journal of Biotechnology, 3, 136–145.

    Google Scholar 

  10. Borner, A. (2006). Biotechnology Journal, 1, 1393–1404.

    Article  Google Scholar 

  11. Nyende, A. B., Schittenhelm, S., Wagner, G. M., & Greef, J. M. (2003). In Vitro Cellular and Developmental Biology-Plant, 39, 540–544.

    Article  Google Scholar 

  12. Germana, M. A., Micheli, M., Chiancone, B., Macaluso, L., & Standardi, A. (2011). Plant Cell Tissue and Organ Culture, 106, 299–307.

    Article  Google Scholar 

  13. Daud, N., Taha, R. M., & Hasbullah, N. A. (2008). Journal of Applied Sciences, 8, 4662–4667.

    Article  Google Scholar 

  14. Ghosh, B., & Sen, S. (1994). Plant Cell Reports, 13, 381–385.

    Article  CAS  Google Scholar 

  15. Lata, H., Chandra, S., Khan, I., & ElSohly, M. A. (2009). Physiology and Molecular Biology of Plants, 15, 79–86.

    Article  CAS  Google Scholar 

  16. Srivastava, V., Khan, S. A., & Banerjee, S. (2009). Plant Cell Tissue and Organ Culture, 99, 193–198.

    Article  CAS  Google Scholar 

  17. Ali, A., Gull, I., Majid, A., Saleem, A., Naz, S., & Naveed, N. H. (2012). Journal of Medicinal Plant Research, 6, 1327–1333.

    CAS  Google Scholar 

  18. Singh, A. K., Sharma, M., Varshney, R., Agarwal, S. S., & Bansal, A. C. (2006). In Vitro Cellular and Developmental Biology-Plant, 42, 109–113.

    Article  CAS  Google Scholar 

  19. Williams, K., Kubelik, A. R., Rafalski, J. A., & Tingey, S. V. (1990). Nucleic Acid Research, 8, 1631–1635.

    Google Scholar 

  20. Waugh, R., & Powell, W. (1992). Trends in Biotechnology, 10, 186–191.

    Article  CAS  Google Scholar 

  21. Rout, G. R., Senapati, S. K., & Aparajita, S. (2010). Czech Journal of Genetics & Plant Breeding, 46, 135–141.

    CAS  Google Scholar 

  22. Srirama, R., Senthilkumar, U., Sreejayan, N., Ravikanth, G., Gurumurthy, B. R., Shivannae, M. B., Sanjappa, M., Ganeshaiah, K. N., & Uma Shaanker, R. (2010). Journal of Ethnopharmacology, 130, 208–215.

    Article  CAS  Google Scholar 

  23. Bandyopadhyay, S., & Raychaudhuri, S. S. (2012). Plant Biosystems, 147, 12–20.

    Article  Google Scholar 

  24. Sarin, B., Clemente, J. P. M., & Mohanty, A. (2013). South African Journal of Botany, 88, 455–458.

    Article  CAS  Google Scholar 

  25. Fatima, N., Ahmad, N., Anis, M., & Ahmad, I. (2013). Industrial Crops and Products, 50, 468–477.

    Article  CAS  Google Scholar 

  26. Faisal, M., Abdularhaman, A. A., & Hegazy, A. K. (2013). Applied Biochemistry and Biotechnology, 169, 408–417.

    Article  CAS  Google Scholar 

  27. Doyle, J. J., & Doyle, J. L. (1990). Focus, 12, 13–15.

    Google Scholar 

  28. Gomez, K. A., & Gomez, A. (1984). A statistical procedure for agricultural research. New York: John Wiley & Sons.

    Google Scholar 

  29. Ikhlaq, M., Hafiz, I. A., Micheli, M., Ahmad, T., Abbasi, N. A., & Standardi, A. (2010). African Journal of Biotechnology, 9, 5712–5721.

    Google Scholar 

  30. Ma, X. M., Wu, C. F., & Wang, G. R. (2011). African Journal of Biotechnology, 10, 15744–15748.

    Article  CAS  Google Scholar 

  31. Scocchi, A., Faloci, M., Medina, R., Olmos, S., & Mroginski, L. (2004). Euphytica, 135, 29–38.

    Article  CAS  Google Scholar 

  32. Faisal, M., Alatar, A., Ahmad, N., Anis, M., & Hegazy, A. K. (2012). Molecules, 17, 5050–5061.

    Article  CAS  Google Scholar 

  33. Chand, S., & Sing, A. K. (2004). Journal of Plant Physiology, 161, 237–243.

    Article  CAS  Google Scholar 

  34. Ozudogru, E. A., Kirdok, E., Kaya, E., Capuana, M., De Carlo, A., & Engelmann, F. (2011). Scientia Horticulturae, 127, 431–435.

    Article  Google Scholar 

  35. Hung, C. D., & Trueman, S. J. (2012). Acta Physiologia Plantarum, 34, 117–128.

    Article  CAS  Google Scholar 

  36. Redenbaugh, K., Fujii, J.A., & Slade. (1993). In: K. Redenbaugh (ed.), Synseeds (pp. 38–46). Boca Raton: CRC Press

  37. Maqsood, M., Mujib, A., & Siddiqui, Z. H. (2012). G Don Biotechnology, 11, 37–43.

    CAS  Google Scholar 

  38. Singh, J., & Tiwari, K. N. (2010). Industrial Crops and Products, 32, 534–538.

    Article  CAS  Google Scholar 

  39. Bolhnark, M., & Eliasson, L. (1986). Physiologia Plantarum, 68, 662–666.

    Article  Google Scholar 

  40. Rubasinghe, M. K., Amarasinghe, K. G. K. D., & Krishnarajha, S. A. (2009). Ceylon Journal of Science (Biological Sciences), 38, 17–22.

    Article  Google Scholar 

  41. Andlib, A., Verma, R. N., & Batra, A. (2011). Journal of Pharmaceutical Research, 4, 2007–2009.

    CAS  Google Scholar 

  42. Devendra, B. N., Srinivas, N., & Naik, G. R. (2011). International Journal of Botany, 7, 216–222.

    Article  CAS  Google Scholar 

  43. Rai, M. K., Jaiswal, V. S., & Jaiswal, U. (2008). Scientia Horticulturae, 118, 33–38.

    Article  CAS  Google Scholar 

  44. Sarmah, D. K., Borthakur, M., & Borua, P. K. (2010). Current Science, 98, 686–690.

    CAS  Google Scholar 

  45. Naik, S. K., & Chand, P. K. (2006). Scientia Horticulturae, 108, 247–252.

    Article  CAS  Google Scholar 

  46. Taha, R. M., Hasbullah, N. A., & Awal, A. (2009). Acta Horticulturae, 829, 91–98.

    Google Scholar 

  47. Faisal, M., Ahmed, N., & Anis, M. (2006). American-Eurasian Journal of Agricultural and Environmental Sciences, 1, 1–6.

    Article  Google Scholar 

  48. Nieves, W., Zambrano, Y., Tapia, R., Cid, M., Pina, D., & Castillo, R. (2003). Plant Cell Tissue and Organ Culture, 7, 279–282.

    Article  Google Scholar 

  49. Redenbaugh, K. (1993). Synseeds: applications of synthetic seeds to crop improvement. Boca Raton: CRC Press.

    Google Scholar 

  50. Micheli, M., Hafiz, I. A., & Standardi, A. (2007). Scientia Horticulturae, 113, 286–292.

    Article  Google Scholar 

  51. Rani, V., Parida, A., & Raina, S. N. (1995). Plant Cell Reports, 14, 459–462.

    Article  CAS  Google Scholar 

  52. Rahman, M. H., & Rajora, O. P. (2001). Plant Cell Reports, 20, 531–536.

    Article  CAS  Google Scholar 

  53. Singh, M., Saroop, J., & Dhiman, B. (2004). Biologia Plantarum, 48, 113–115.

    Article  CAS  Google Scholar 

  54. Marimuthu, J., & Antonisamy, A. (2007). Iranian Journal of Biotechnology, 5, 240–245.

    CAS  Google Scholar 

  55. Lata, H., Chandra, S., Techen, N., Khan, I.A., & El Sohly, M.A. (2011). Biotechnology letter, (609–615).

Download references

Acknowledgments

Richa Upadhyay is highly thankful to CSIR, New Delhi, for providing fellowship in the form of SRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kavindra Nath Tiwari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upadhyay, R., Kashyap, S.P., Singh, C.S. et al. Ex Situ Conservation of Phyllanthus fraternus Webster and Evaluation of Genetic Fidelity in Regenerates Using DNA-Based Molecular Marker. Appl Biochem Biotechnol 174, 2195–2208 (2014). https://doi.org/10.1007/s12010-014-1175-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1175-9

Keywords

Navigation