Skip to main content
Log in

Genome Shuffling and Ribosome Engineering of Streptomyces actuosus for High-Yield Nosiheptide Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Nosiheptide is one of the EU-approved sulfur-containing peptides in feed industry to inhibit the growth of the majority of Gram-positive bacteria. The main purpose of this study is directed to breed the high nosiheptide-producers by genome shuffling and ribosome engineering in Streptomyces actuosus AW7. The starting population for shuffling was generated by combining 60Coγ-irradiation with LiCl mutagenesis treatments on the spores. After four rounds of protoplast fusion exposed to streptomycin as adaptive pressure, a high-yield recombinant strain D92 was obtained. In a 10-L fermenter, nosiheptide production reached 1.54 g/L which was 9.20-fold compared to that of the parental strain. Hyphae development, metabolic process, and ribosomal protein S12 sequence were investigated to characterize the differentiation among the recombinants. Several mutations in S12 were believed to be responsible to streptomycin resistance in the tested strain. The results demonstrated that the combination of genome shuffling and ribosome engineering is an efficient approach to breed high-yield industrial strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Benazet, F., Cartier, M., Florent, J., Godard, C., Jung, G., Lunel, J., et al. (1979). Nosiheptide, a sulfur-containing peptide antibiotic isolated from Streptomyces actuosus 40037. Experientia, 36, 414–416.

    Article  Google Scholar 

  2. Wang, S. F., Zhou, S. X., & Liu, W. (2013). Opportunities and challenges from current investigations into the biosynthetic logic of nosiheptide-represented thiopeptide antibiotics. Current Opinion in Chemical Biology, 17, 626–634.

    Article  CAS  Google Scholar 

  3. Yu, Y., Duan, L., Zhang, Q., Liao, R. J., Ding, Y., Pan, H., et al. (2009). Nosiheptide biosynthesis featuring a unique indole side ring formation on the characteristic thiopeptide framework. ACS Chemical Biology, 4, 855–864.

    Article  CAS  Google Scholar 

  4. Haste, N. M., Thienphrapa, W., Tran, D. N., Loesgen, S., Sun, P., Nam, S. J., et al. (2012). Activity of the thiopeptide antibiotic nosiheptide against contemporary strains of methicillin-resistant Staphylococcus aureus. Journal of Antibiotics (Tokyo), 65, 593–598.

    Article  CAS  Google Scholar 

  5. Harms, J. M., Wilson, D. N., Schluenzen, F., Connell, S. R., Stachelhaus, T., Zaborowska, Z., et al. (2008). Translational regulation via L11: molecular switches on the ribosome turned on and off by thiostrepton and micrococcin. Molecular Cell, 30, 26–38.

    Article  CAS  Google Scholar 

  6. Cromwells, G. L., Stahlys, T. S., Speer, V. C., & O’Kelly, R. (1984). Efficacy of nosiheptide as a growth promotant for growing-finishing swine—a cooperative study. Journal of Animal Science, 59, 1125–1128.

    Google Scholar 

  7. Zhang, Y. X., Perry, K., Vinci, V. A., Powell, K., Stemmer, W. P., & del Cardayre, S. B. (2002). Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature, 415, 644–646.

    Article  CAS  Google Scholar 

  8. Zheng, D. Q., Wu, X. C., Wang, P. M., Chi, X. Q., Tao, X. L., Li, P., et al. (2011). Drug resistance marker-aided genome shuffling to improve acetic acid tolerance in Saccharomyces cerevisiae. The Journal of Industrial Microbiology and Biotechnology, 38, 415–422.

    Article  CAS  Google Scholar 

  9. Hida, H., Yamada, T., & Yamada, Y. (2007). Genome shuffling of Streptomyces sp. U121 for improved production of hydroxycitric acid. Applied Microbiology and Biotechnology, 73, 1387–1393.

    Article  CAS  Google Scholar 

  10. Zheng, P., Liu, M., Liu, X. D., Du, Q. Y., Ni, Y., & Sun, Z. H. (2012). Genome shuffling improves thermotolerance and glutamic acid production of Corynebacteria glutamicum. World Journal of Microbiology and Biotechnology, 28, 1035–1043.

    Article  CAS  Google Scholar 

  11. Li, W., Chen, G., Gu, L., Zeng, W., & Liang, Z. (2013). Genome shuffling of Aspergillus niger for improving transglycosylation activity. Applied Biochemistry and Biotechnology, 172, 50–61.

    Article  Google Scholar 

  12. Shima, J., Hesketh, A., Okamoto, S., Kawamoto, S., & Ochi, K. (1996). Induction of actinorhodin production by rpsL (encoding ribosomal protein S12) mutations that confer streptomycin resistance in Streptomyces lividans and Streptomyces coelicolor A3(2). Journal of Bacteriology, 178, 7276–7284.

    CAS  Google Scholar 

  13. Ochi, K., Okamoto, S., Tozawa, Y., Inaoka, T., Hosaka, T., Xu, J., et al. (2004). Ribosome engineering and secondary metabolite production. Advances in Applied Microbiology, 56, 155–184.

    Article  CAS  Google Scholar 

  14. Ochi, K. (2007). From microbial differentiation to ribosome engineering. Bioscience, Biotechnology, and Biochemistry, 71, 1373–1386.

    Article  CAS  Google Scholar 

  15. Tamehiro, N., Hosaka, T., Xu, J., Hu, H., Otake, N., & Ochi, K. (2003). Innovative approach for improvement of an antibiotic-overproducing industrial strain of Streptomyces albus. Applied and Environmental Microbiology, 69, 6412–6417.

    Article  CAS  Google Scholar 

  16. Wang, G., Hosaka, T., & Ochi, K. (2008). Dramatic activation of antibiotic production in Streptomyces coelicolor by cumulative drug resistance mutations. Applied and Environmental Microbiology, 74, 2834–2840.

    Article  CAS  Google Scholar 

  17. Zhang, J., Wang, X. J., Diao, J. N., He, H. R., Zhang, Y. J., & Xiang, W. S. (2013). Streptomycin resistance-aided genome shuffling to improve doramectin productivity of Streptomyces avermitilis NEAU1069. The Journal of Industrial Microbiology and Biotechnology, 40, 877–889.

    Article  CAS  Google Scholar 

  18. Liu, Z., Zhao, X., & Bai, F. (2013). Production of xylanase by an alkaline-tolerant marine-derived Streptomyces viridochromogenes strain and improvement by ribosome engineering. Applied Microbiology and Biotechnology, 97, 4361–4368.

    Article  CAS  Google Scholar 

  19. Lv, X. A., Jin, Y. Y., Li, Y. D., Zhang, H., & Liang, X. L. (2013). Genome shuffling of Streptomyces viridochromogenes for improved production of avilamycin. Applied Microbiology and Biotechnology, 97, 641–648.

    Article  CAS  Google Scholar 

  20. Zhang, X., Fen, M., Shi, X., Bai, L., & Zhou, P. (2008). Overexpression of yeast S-adenosylmethionine synthetase metK in Streptomyces actuosus leads to increased production of nosiheptide. Applied Microbiology and Biotechnology, 78, 991–995.

    Article  CAS  Google Scholar 

  21. Manteca, A., Alvarez, R., Salazar, N., Yague, P., & Sanchez, J. (2008). Mycelium differentiation and antibiotic production in submerged cultures of Streptomyces coelicolor. Applied and Environmental Microbiology, 74, 3877–3886.

    Article  CAS  Google Scholar 

  22. Nakajima, A., Wada, K., Katayama, K., Saubermann, L., Osawa, E., Nagase, H., et al. (2002). Gene expression profile after peroxisome proliferator activator receptor-gamma ligand administration in dextran sodium sulfate mice. Journal of Gastroenterology, 37(Suppl 14), 62–66.

    Article  CAS  Google Scholar 

  23. Mocek, U., Chen, L. C., Keller, P. J., Houck, D. R., Beale, J. M., & Floss, H. G. (1989). 1H and 13C NMR assignments of the thiopeptide antibiotic nosiheptide. The Journal of Antibiotics, 42, 1643–1648.

    Article  CAS  Google Scholar 

  24. Stemmer, & Willem, P. C. (2001). Molecular breeding of genes, pathways and genomes by DNA shuffling. Journal of Molecular Catalysis B, 19–20, 3–12.

    Google Scholar 

  25. Xu, B., Jin, Z., Wang, H., Jin, Q., Jin, X., & Cen, P. (2008). Evolution of Streptomyces pristinaespiralis for resistance and production of pristinamycin by genome shuffling. Applied Microbiology and Biotechnology, 80, 261–267.

    Article  CAS  Google Scholar 

  26. Mocek, U., Knaggs, A. R., Tsuchiya, R., Nguyen, T., Beale, J. M., & Floss, H. G. (1993). Biosynthesis of modified peptide antibiotic nosiheptide in Streptomyces actuosus. Journal of the American Chemical Society, 115, 7557–7568.

    Article  CAS  Google Scholar 

  27. Chaudhary, A. K., Dhakal, D., & Sohng, J. K. (2013). An insight into the “-omics” based engineering of streptomycetes for secondary metabolite overproduction. BioMed Research International, 2013, 968518–968533.

    Article  Google Scholar 

  28. Yang, H., Wang, Z., Shen, Y., Wang, P., Jia, X., Zhao, L., et al. (2010). Crystal structure of the nosiheptide-resistance methyltransferase of Streptomyces actuosus. Biochemistry, 49, 6440–6450.

    Article  CAS  Google Scholar 

  29. Singh, K., Wangikar, P., & Jadhav, S. (2012). Correlation between pellet morphology and glycopeptide antibiotic balhimycin production by Amycolatopsis balhimycina DSM 5908. The Journal of Industrial Microbiology and Biotechnology, 39, 27–35.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was financially supported by the National Nature and Science Foundation of China (3117175)

Conflict of Interests

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinle Liang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Zhang, D., Li, Y. et al. Genome Shuffling and Ribosome Engineering of Streptomyces actuosus for High-Yield Nosiheptide Production. Appl Biochem Biotechnol 173, 1553–1563 (2014). https://doi.org/10.1007/s12010-014-0948-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0948-5

Keywords

Navigation