Skip to main content
Log in

Growth Characteristics of Human Adipose-Derived Stem Cells During Long Time Culture Regulated by Cyclin A and Cyclin D1

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Abundant and less passaged cells are highly expected in clinical application since repeated subculture reduces stem cell characteristics. Long time culture of stem cells without passage is therefore needed. The growth and cell viability of human adipose-derived stem cells (hADSCs) were investigated by live/dead staining, cck-8 kits, and hemocytometer every day in 30 days of culture. The stem cell characteristics of hADSCs at the beginning and the end of culture were detected by flow cytometry and histochemical staining. hADSCs can be cultured up to the 30th day in one passage while maintaining high level cell viability and their stem cell characteristics. In addition, the cells displayed two plateau phases and three logarithmic phases during 1 month of culture. Increasing expression of cyclin A at protein level resulted in an increase in the percentage of hADSCs in the S and G2/M phases, while decreasing protein level of cyclin D1 induced a decline in the proportion of hADSCs in the G0/G1 phase, regulating cells to move into rapid proliferation. This study demonstrates that a great quantity of hADSCs can be obtained in vitro by prolonging the culture time of each passage. And cyclin A and cyclin D1 affect the distribution of cell cycle and regulate the growth of hADSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zuk, P. A., Zhu, M., Mizuno, H., Huang, J., Futrell, J. W., Katz, A. J., Benhaim, P., Lorenz, H. P., & Hedrick, M. H. (2001). Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Engineering, 7, 211–228.

    Article  CAS  Google Scholar 

  2. Flynn, L., Prestwich, G. D., Semple, J. L., & Woodhouse, K. A. (2007). Adipose tissue engineering with naturally derived scaffolds and adipose-derived stem cells. Biomaterials, 28, 3834–3842.

    Article  CAS  Google Scholar 

  3. Hong, L., Colpan, A., Peptan, I. A., Daw, J., George, A., & Evans, C. A. (2007). 17-Beta estradiol enhances osteogenic and adipogenic differentiation of human adipose-derived stromal cells. Tissue Engineering, 13, 1197–1203.

    Article  CAS  Google Scholar 

  4. Xu, Y., Malladi, P., Chiou, M., Bekerman, E., Giaccia, A. J., & Longaker, M. T. (2007). In vitro expansion of adipose-derived adult stromal cells in hypoxia enhances early chondrogenesis. Tissue Engineering, 13, 2981–2993.

    Article  CAS  Google Scholar 

  5. Estes, R. T., Wu, A. W., Storms, R. W., & Guilak, F. (2006). Extended passaging, but not aldehyde dehydrogenase activity, increases the chondrogenic potential of human adipose-derived adult stem cells. Journal of Cellular Physiology, 209, 987–995.

    Article  CAS  Google Scholar 

  6. Wall, M. E., Bernacki, S. H., & Loboa, E. G. (2007). Effects of serial passaging on the adipogenic and osteogenic differentiation potential of adipose-derived human mesenchymal stem cells. Tissue Engineering, 13, 1291–1298.

    Article  CAS  Google Scholar 

  7. Wan, D. C., Siedhoff, M. T., Kwan, M. D., Nacamuli, R. P., Wu, B. M., & Longaker, M. T. (2007). Refining retinoic acid stimulation for osteogenic differentiation of murine adipose-derived adult stromal cells. Tissue Engineering, 13, 1623–1631.

    Article  CAS  Google Scholar 

  8. Rodriguez, L. V., Alfonso, Z., Zhang, R., Leung, J., Wu, B., & Ignarro, L. J. (2006). Clonogenic multipotent stem cells in human adipose tissue differentiate into functional smooth muscle cells. Proceedings of the National Academy of Sciences of the United States of America, 103, 12167–12172.

    Article  CAS  Google Scholar 

  9. Safford, K. M., Hicok, K. C., Safford, S. D., Halvorsen, Y. D. C., Wilkison, W. O., Gimble, J. M., & Rice, H. E. (2002). Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochemical and Biophysical Research Communications, 294, 371–379.

    Article  CAS  Google Scholar 

  10. Anghileri, E., Marconi, S., Pignatelli, A., Cifelli, P., Galie, M., Sbarbati, A., Krampera, M., Belluzzi, O., & Bonetti, B. (2008). Neuronal differentiation potential of human adipose-derived mesenchymal stem cells. Stem Cells and Development, 17, 909–916.

    Article  CAS  Google Scholar 

  11. Safford, K. M., Safford, S. D., Gimble, J. M., Shetty, A. K., & Rice, H. E. (2004). Characterization of neuronal/glial differentiation of murine adipose-derived adult stromal cells. Experimental Neurology, 187, 319–328.

    Article  CAS  Google Scholar 

  12. Zhu, Y. X., Liu, T. Q., Song, K. D., Ning, R. M., Ma, X. H., & Cui, Z. F. (2009). ADSCs differentiated into cardiomyocytes in cardiac microenvironment. Molecular and Cellular Biochemistry, 324, 117–129.

    Article  CAS  Google Scholar 

  13. Rangappa, S., Fen, C., Lee, E. H., Bongso, A., & Wei, E. S. K. (2003). Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes. The Annals of Thoracic Surgery, 75, 775–779.

    Article  Google Scholar 

  14. Banas, A., Teratani, T., Yamamoto, Y., Tokuhara, M., Takeshita, F., Osaki, M., Kato, T., Okochi, H., & Ochiya, T. (2009). Rapid hepatic fate specification of adipose-derived stem cells and their therapeutic potential for liver failure. Journal of Gastroenterology and Hepatology, 24, 70–77.

    Article  CAS  Google Scholar 

  15. Seo, M. J., Suh, S. Y., Bae, Y. C., & Jung, J. S. (2005). Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo. Biochemical and Biophysical Research Communications, 328, 258–264.

    Article  CAS  Google Scholar 

  16. Planat-Benard, V., Silvestre, J. S., Cousin, B., Andre, M., Nibbelink, M., Tamarat, R., Clergue, M., Manneville, C., Saillan-Barreau, C., Duriez, M., Tedgui, A., Levy, B., Penicaud, L., & Casteilla, L. (2004). Plasticity of human adipose lineage cells toward endothelial cells—physiological and therapeutic perspectives. Circulation, 109, 656–663.

    Article  Google Scholar 

  17. Miranville, A., Heeschen, C., Sengenes, C., Curat, C. A., Busse, R., & Bouloumie, A. (2004). Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation, 110, 349–355.

    Article  CAS  Google Scholar 

  18. Kern, S., Eichler, H., Stoeve, J., Kluter, H., & Bieback, K. (2006). Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells, 24, 1294–1301.

    Article  CAS  Google Scholar 

  19. Williams, K. J., Picou, A. A., Kish, S. L., Giraldo, A. M., Godke, R. A., & Bondioli, K. R. (2008). Isolation and characterization of porcine adipose tissue-derived adult stem cells. Cells, Tissues, Organs, 188, 251–258.

    Article  Google Scholar 

  20. Yoshimura, K., Shigeura, T., Matsumoto, D., Sato, T., Takaki, Y., Aiba-Kojima, E., Sato, K., Inoue, K., Nagase, T., Koshima, I., & Gonda, K. (2006). Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. Journal of Cellular Physiology, 208, 64–76.

    Article  CAS  Google Scholar 

  21. Aust, L., Devlin, B., Foster, S. J., Halvorsen, Y. D. C., Hicok, K., du Laney, T., Sen, A., Willingmyre, G. D., & Gimble, J. M. (2004). Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy, 6, 7–14.

    Article  CAS  Google Scholar 

  22. Garcia-Olmo, D., Garcia-Arranz, M., Herreros, D., Pascual, I., Peiro, C., & Rodriguez-Montes, J. A. (2005). A phase I clinical trial of the treatment of Crohn’s fistula by adipose mesenchymal stem cell transplantation. Diseases of the Colon & Rectum, 48, 1416–1423.

    Article  Google Scholar 

  23. Safwani, W. K. Z. W., Makpol, S., Sathapan, S., & Chua, K. H. (2011). The changes of stemness biomarkers expression in human adipose-derived stem cells during long-term manipulation. Biotechnology and Applied Biochemistry, 58, 261–270.

    Article  CAS  Google Scholar 

  24. Choi, M. R., Kim, H. Y., Park, J. Y., Lee, T. Y., Baik, C. S., Chai, Y. G., Jung, K. H., Park, K. S., Roh, W., Kim, K. S., & Kim, S. H. (2010). Selection of optimal passage of bone marrow-derived mesenchymal stem cells for stem cell therapy in patients with amyotrophic lateral sclerosis. Neuroscience Letters, 472, 94–98.

    Article  CAS  Google Scholar 

  25. Kim, J., Kang, J., Park, J., Choi, Y., Choi, K., Park, K., Baek, D., Seong, S., Min, H. K., & Kim, H. (2009). Biological characterization of long-term cultured human mesenchymal stem cells. Archives of Pharmacal Research, 32, 117–126.

    Article  CAS  Google Scholar 

  26. Bonab, M. M., Alimoghaddam, K., Talebian, F., Ghaffari, S. H., Ghavamzadeh, A., & Nikbin, B. (2006). Aging of mesenchymal stem cell in vitro. BMC Cell Biology, 7, 14–21.

    Article  Google Scholar 

  27. Zhu, Y. X., Liu, T. Q., Song, K. D., Fan, X. B., Ma, X. H., & Cu, Z. F. (2008). Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochemistry and Function, 26, 664–675.

    Article  CAS  Google Scholar 

  28. Cui, L., Wu, Y., Cen, L., Zhou, H., Yin, S., Liu, G., Liu, W., & Cao, Y. (2009). Repair of articular cartilage defect in non-weight bearing areas using adipose derived stem cells loaded polyglycolic acid mesh. Biomaterials, 30, 2683–2693.

    Article  CAS  Google Scholar 

  29. Park, H., Cho, J. A., Lim, E. H., Lee, C. W., Lee, S. H., Seo, S. W., Yang, D. Y., & Lee, K. W. (2011). Cell cycle regulators are critical for maintaining the differentiation potential and immaturity in adipogenesis of adipose-derived stem cells. Differentiation, 82, 136–143.

    Article  CAS  Google Scholar 

  30. Donnellan, R., & Chetty, R. (1998). Cyclin D1 and human neoplasia. Journal of Clinical Pathology-Molecular Pathology, 51, 1–7.

    Article  CAS  Google Scholar 

  31. Suga, H., Shigeura, T., Matsumoto, D., Inoue, K., Kato, H., Aoi, N., Murase, S., Sato, K., Gonda, K., Koshima, I., & Yoshimura, K. (2007). Rapid expansion of human adipose-derived stromal cells preserving multipotency. Cytotherapy, 9, 738–745.

    Article  CAS  Google Scholar 

  32. Erickson, G. R., Gimble, J. M., Franklin, D. M., Rice, H. E., Awad, H., & Guilak, F. (2002). Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo. Biochemical and Biophysical Research Communications, 290, 763–769.

    Article  CAS  Google Scholar 

  33. Waladali, W., Luo, Y., Li, W. S., Zheng, M. X., & Hu, Q. L. (2009). 17Beta-estradiol affects the proliferation and apoptosis of rat bladder neck smooth muscle cells by modulating cell cycle transition and related proteins. World Journal of Urology, 27, 241–248.

    Article  CAS  Google Scholar 

  34. Xin, Z. F., Kim, Y. K., & Jung, S. T. (2009). Risedronate inhibits human osteosarcoma cell invasion. Journal of Experimental & Clinical Cancer Research, 28, 105–113.

    Article  Google Scholar 

  35. Zhou, Y., Yan, Z., Zhang, H., Lu, W., Liu, S., Huang, X., Luo, H., & Jin, Y. (2011). Expansion and delivery of adipose-derived mesenchymal stem cells on three microcarriers for soft tissue regeneration. Tissue Engineering. Part A, 17, 2981–2997.

    Article  CAS  Google Scholar 

  36. Locke, M., Windsor, J., & Dunbar, P. R. (2009). Human adipose-derived stem cells: isolation, characterization and applications in surgery. ANZ Journal of Surgery, 79, 235–244.

    Article  Google Scholar 

  37. Sekiya, I., Larson, B. L., Smith, J. R., Pochampally, R., Cui, J. G., & Prockop, D. J. (2002). Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality. Stem Cells, 20, 530–541.

    Article  Google Scholar 

  38. Yang, X.-F., He, X., He, J., Zhang, L.-H., Su, X.-J., Dong, Z.-Y., Xu, Y.-J., Li, Y., & Li, Y.-L. (2011). High efficient isolation and systematic identification of human adipose-derived mesenchymal stem cells. Journal of Biomedical Science, 18, 59–68.

    Article  Google Scholar 

  39. Ning, H. X., Liu, G., Lin, G. T., Garcia, M., Li, L. C., Lue, T. F., & Lin, C. S. (2009). Identification of an aberrant cell line among human adipose tissue-derived stem cell isolates. Differentiation, 77, 172–180.

    Article  CAS  Google Scholar 

  40. Qiao, C., Xu, W. R., Zhu, W., Hu, J. B., Qian, H., Yin, Q., Jiang, R. Q., Yan, Y. M., Mao, F., Yang, H., Wang, X. Z., & Chen, Y. C. (2008). Human mesenchymal stem cells isolated from the umbilical cord. Cell Biology International, 32, 8–15.

    Article  CAS  Google Scholar 

  41. Hou, M., Yang, K. M., Zhang, H., Zhu, W. Q., Duan, F. J., Wang, H., Song, Y. H., Wie, Y. J., & Hu, S. S. (2007). Transplantation of mesenchymal stem cells from human bone marrow improves damaged heart function in rats. International Journal of Cardiology, 115, 220–228.

    Article  Google Scholar 

  42. Eslaminejad, M. R. B., Jahangir, S., & Aghdami, N. (2010). Comparison of proliferation, senescence and differentiation into skeletal cell lineages of murine bone marrow-derived and amniotic fluid mesenchymal stem cells. Iranian Red Crescent Medical Journal, 12, 615–623.

    Google Scholar 

  43. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F. C., Krause, D. S., Deans, R. J., Keating, A., Prockop, D. J., & Horwitz, E. M. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8, 315–317.

    Article  CAS  Google Scholar 

  44. Li, X. H., Du, M., Liu, X. X., Chen, W. L., Wu, M. X., Lin, J. M., & Wu, G. W. (2010). Millimeter wave treatment promotes chondrocyte proliferation by upregulating the expression of cyclin-dependent kinase 2 and cyclin A. International Journal of Molecular Medicine, 26, 77–84.

    Google Scholar 

  45. Fei, Q., Guo, C., Xu, X., Gao, J., Zhang, J., Chen, T., & Cui, D. (2010). Osteogenic growth peptide enhances the proliferation of bone marrow mesenchymal stem cells from osteoprotegerin-deficient mice by CDK2/cyclin A. Acta Biochimica et Biophysica Sinica, 42, 801–806.

    Article  CAS  Google Scholar 

  46. Jeon, E. M., Choi, H. C., Lee, K. Y., Chang, K. C., & Kang, Y. J. (2009). Hemin inhibits hypertensive rat vascular smooth muscle cell proliferation through regulation of cyclin D and p21. Archives of Pharmacal Research, 32, 375–382.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (31170945).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianqing Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, L., Liu, T. & Song, K. Growth Characteristics of Human Adipose-Derived Stem Cells During Long Time Culture Regulated by Cyclin A and Cyclin D1. Appl Biochem Biotechnol 168, 2230–2244 (2012). https://doi.org/10.1007/s12010-012-9932-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9932-0

Keywords

Navigation