Skip to main content
Log in

Biological characterization of long-term cultured human mesenchymal stem cells

  • Research Article
  • Drug Efficacy and Safety
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Human mesenchymal stem cells (hMSCs) have generated a great deal of interest in clinical applications. The reason is that they may have the plasticity needed to differentiate into multiple lineages and the ability to expand ex vivo. For the therapeutic applications of hMSCs to be of practical use, it is crucial to assess the efficacy and safety of hMSCs in long-term ex vivo expansion. In this study, we cultured hMSCs by population doubling (PD) 60, and investigated their growth, osteogenic and adipogenic differential abilities, change of surface markers, telomerase activity, telomere length, and gene expression related to tumorigenesis. An in vivo tumorigenesis assay was also carried out. In long-term expanded hMSCs, the cells became aged above PD 30 and their adipogenic and osteogenic differentiation potential decreased. Telomerase activity unchanged whereas telomere length decreased and karyotypes were not changed. Gene expressions related to tumorigenesis decreased in proportion as the PD of hMSCs increased. In vivo transplantation of long-term cultured hMSCs to nude mice did not result in tumor formation. These findings suggest that diverse tests for cellular therapy should be considered during the ex vivo culture of hMSCs, particularly when a prolonged and extended propagation period is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguilar, S., Nye, E., Chan, J., Loebinger, M., Spencer-Dene, B., Fisk, N., Stamp, G., Bonnet, D., and Janes, S. M., Murine but not human mesenchymal stem cells generate osteosarcoma-like lesions in the lung. Stem cells, 25, 1586–1594 (2007).

    Article  PubMed  Google Scholar 

  • Aue, G., Muralidhar, B., Schwartz, H. S., and Butler, M. G., Telomerase activity in skeletal sarcomas. Ann. Surg. Oncol., 5, 627–634 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Barry, F. P. and Murphy, J.M., Mesenchymal stem cells: clinical applications and biological characterization. The international journal of biochemistry and cell biology, 36, 568–584 (2004).

    Article  CAS  Google Scholar 

  • Baxter, M. A., Wynn, R. F., Jowitt, S. N., Wraith, J. E., Fairbairn, L. J., and Bellantuono, I., Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells, 22, 675–682 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Blackburn, E. H., Telomerases. Annu. Rev. Biochem., 61, 113–129 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Bonab, M. M., Alimoghaddam, K., Talebian, F., Ghaffari, S. H., Ghavamzadeh, A., and Nikbin, B., Aging of mesenchymal stem cell in vitro. BioMed. Central., 7, 7–14, (2006).

    Google Scholar 

  • Chin, L., Artandi, S. E., Shen, Q., Tam, A., Lee, S. L., Gottlieb, G. J., Greider, C. W., and Depinho, R. A., p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell, 97, 527–538 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Deng, W., Obrocka, M., Fischer, I., and Prockop, D. J., In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP. Biochem. Biophys. Res. Commun., 282, 148–152 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Devine, S. M. and Hoffman, R., Role of mesenchymal stem cells in hematopoietic stem cell transplantation. Curr. Opin. Hematol., 7, 358–363 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Dexter, T. M. and Spooncer, E., Growth and differentiation in the hemopoietic system. Annu. Rev. Cell Biol., 3, 423–441 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Digirolamo, C. M., Stokes, D., Colter, D., Phinney, D. G., Class, R., and Prockop, D. J., Propagation and senescence of human marrow stromal cells in culture: A simple colonyforming assay identifies samples with the greatest potential to propagate and differentiate. Br. J. Haematol., 107, 275–281 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Friedenstein, A. J., Gorskaja, J. F., and Kulagina, N. N., Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp. Hematol., 4, 267–274 (1976).

    PubMed  CAS  Google Scholar 

  • Friedenstein, A. J., Latzinik, N. W., Grosheva, A. G., and Gorskaya, U. F., Marrow microenvironment transfer by heterotopic transplantation of freshly isolated and cultured cells in porous sponges. Exp. Hematol., 10(2), 217–227 (1982).

    PubMed  CAS  Google Scholar 

  • Greider, C. W., Telomerase activity, cell proliferation, and cancer. Proc. Natl. Acad. Sci. USA., 95, 90–92 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Harley, C. B., Futcher, A. B., and Greider, C. W., Telomeres shorten during aging of human fibroblasts. Nature, 345, 458–460 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Harley, C. B., Vaziri, H., Counter, C. M., and Allsopp, R. C., The telomere hypothesis of cellular aging. Exp. Gerontol., 27, 375–382 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Jaiswal, N., Haynesworth, E., Caplan, A. I., and Bruder, S. P., Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J. Cell Biochem. 64, 295–312 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Jiang, Y., Vaessen, B., Lenvik, T., Blackstad, M., Reyes, M., and Verfaillie, C. M., Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp. Hematol. 30, 896–904 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Johnstone, B., Hering, T. M., Caplan, A. I., Goldberg, V. M., and Yoo, J. U., In vitro chondrogenesis of bone marrowderived mesenchymal progenitor cells. Exp. Cell Res., 238, 265–272 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Kaul, S. C. and Wadhwa, R., Aging of Cells in and outside the Body. Kuwer Academic Publishers, London, pp. 1–8, (2003).

    Google Scholar 

  • Kveiborg, M., Kassem, M., Langdahl, B., Eriksen, E. F., Clark, B. F., and Rattan, S. I., Telomere shortening during aging of human osteoblasts in vitro and leukocytes in vivo: lack of excessive telomere loss in osteoporotic patients. Mech. Aging Dev., 106, 261–271 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Lepperdinger, G., Brunauer, R., Jamnig, A., Laschober, G., and Kassem, M., Controversial issue: Is it safe to employ mesenchymal stem cells in cell-based therapies? Experimental Gerontology (2008).

  • Lloyd, A. C., Limits to lifespan. Nat. Cell. Biol., 4, 25–27 (2002).

    Article  Google Scholar 

  • Mauney, J. R., Kaplan, D. L., and Volloch, V., Matrix-mediated retention of osteogenic differentiation potential by human adult bone marrow stromal cells during ex vivo expansion. Biomaterials, 25, 3233–3243 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Noth, U., Osyczka, A. M., Tuli, R., Hickok, N. J., Danielson, K. G., and Tuan, R. S., Multilineage mesenchymal differentiation potential of human trabecular bone-derived cells. J. Orthop. Res., 20, 1060–1069 (2002).

    Article  PubMed  Google Scholar 

  • Parsch, D., Fellenberg, J., Brummendorf, T. H., Eschlbeck, A. M., and Richter, W., Telomere length and telomerase activity during expansion and differentiation of human mesenchymal stem cells and chondrocyte. J. Mol. Med., 82, 49–55 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S., and Marshak, D. R., Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143–147 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Purpura, K. A., Aubin, J. E., and Zandstra, P. W., Sustained in vitro expansion of bone progenitors is cell density dependent. Stem Cells, 22, 39–50 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Rubio, D., Garcia-Castro, J., Martín, M. C., de la Fuente, R., Cigudosa, J. C., Lloyd, A. C., and Bernad, A., Spontaneous human adult stem cell transformation. Cancer research, 65(8), 3035–3039 (2005).

    PubMed  CAS  Google Scholar 

  • Rubio, D., Garcia, S., Paz, M. F., de la Cueva, T., Lopez-Fernandez, L. A., Lloyd, A. C., Garcia-Castro, J., and Bernad, A., Molecular characterization of spontaneous mesenchymal stem cell transformation. PLoS ONE, 3(1), e1398 (2008).

    Article  PubMed  Google Scholar 

  • Shay, J. W. and Bacchetti, S., A survey of telomerase activity in human cancer. Eur. J. Cancer, 33, 787–791 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Shay, J.W., Zou, Y., Hiyama, E., and Wright, W. E., Telomerase and cancer. Hum. Mol. Genet., 10, 677–685 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Simonsen, J. L., Rosada, C., Serakinci, N., Justesen, J., Stenderup, K., Rattan, S. I., Jensen, T. G., and Kassem, M., Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells, Nat. Biotechnol., 20, 592–596 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Stenderup, K., Justesen, J., Clausen, C., and Kassem, M., Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone, 33, 919–926 (2003).

    Article  PubMed  Google Scholar 

  • Tuli, R., Seghatoleslami, M. R., Tuli, S., Wang, M. L., Hozack, W. J., Manner, P. A., Danielson, K. G., and Tuan, R. S., A simple, high-yield method for obtaining multipotential mesenchymal progenitor cells from trabecular bone. Mol. Biotechnol., 23, 37–49 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Wakitani, S., Saito, T., and Caplan, A. I., Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve, 18, 1417–1426 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Wexler, S. A., Donaldson, C., Denning-Kendall, P., Rice, C., Bradley, B., and Hows, J. M., Adult bone marrow is a rich source of human mesenchymal ’stem’ cells but umbilical cord and mobilized adult blood are not. Br. J. Haematol., 121(2), 368–374 (2003).

    Article  PubMed  Google Scholar 

  • Zimmermann, S., Voss, M., Kaiser, S., Kapp, U., Waller, C. F., and Martens, U. M., Lack of telomerase activity in human mesenchymal stem cells. Leukemia, 17, 1146–1149 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Zuk, P. A., Zhu, M., Ashjian, P., De Ugarte, D. A., Huang, J. I., Mizuno, H., Alfonso, Z. C., Fraser, J. K., Benhaim, P., and Hedrick, M. H., Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell, 13, 4279–4295 (2002).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung Soo Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J., Kang, J.W., Park, J.H. et al. Biological characterization of long-term cultured human mesenchymal stem cells. Arch. Pharm. Res. 32, 117–126 (2009). https://doi.org/10.1007/s12272-009-1125-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-009-1125-1

Key words

Navigation