Skip to main content
Log in

ADSCs differentiated into cardiomyocytes in cardiac microenvironment

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The microenvironment plays a critical role in directing the progression of stem cells into differentiated cells. So we investigated the role that cardiac microenvironment plays in directing this differentiation process. Adipose tissue-derived stem cells (ADSCs) were cultured with cardiomyocytes directly (“co-culture directly”) or by cell culture insert (“co-culture indirectly”). For co-culture indirectly, differentiated ADSCs were collected and identified. For co-culture directly, ADSCs were labeled with carboxyfluorescein succinimidyl ester (CFSE), Fluorescence-activated cell sorting was used to extract and examine the differentiated ADSCs. The ultrastructure and the expression of cardiac specific proteins and genes were analyzed by SEM, TEM, western blotting, and RT-PCR, respectively. Differentiated ADSCs experienced the co-culture presented cardiac ultrastructure and expressed cardiac specific genes and proteins, and the fractions of ADSCs expressing these markers by co-culture directly were higher than those of co-culture indirectly. These data indicate that in addition to soluble signaling molecules, direct cell-to-cell contact is obligatory in relaying the external cues of the microenvironment controlling the differentiation of ADSCs to cardiomyocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Engelmann MG, Franz WM (2006) Stem cell therapy after myocardial infarction: ready for clinical application? Curr Opin Mol Ther 8:396–414

    PubMed  Google Scholar 

  2. Wu KH, Liu YL, Zhou B et al (2006) Cellular therapy and myocardial tissue engineering: the role of adult stem and progenitor cells. Eur J Cardiothorac Surg 30:770–781. doi:10.1016/j.ejcts.2006.08.003

    Article  PubMed  Google Scholar 

  3. Bin Z, Sheng LG, Gang ZC et al (2006) Efficient cardiomyocyte differentiation of embryonic stem cells by bone morphogenetic protein-2 combined with visceral endoderm-like cells. Cell Biol Int 30:769–776. doi:10.1016/j.cellbi.2006.05.011

    Article  PubMed  Google Scholar 

  4. Xiao YF, Min JY, Morgan JP (2004) Immunosuppression and xenotransplantation of cells for cardiac repair. Ann Thorac Surg 77:737–744. doi:10.1016/j.athoracsur.2003.08.036

    Article  PubMed  Google Scholar 

  5. Vulliet PR, Greeley M, Halloran SM et al (2004) Intra-coronary arterial injection of mesenchymal stromal cells and microinfarction in dogs. Lancet 363:783–784. doi:10.1016/S0140-6736(04)15695-X

    Article  PubMed  Google Scholar 

  6. Maitra A, Arking DE, Shivapurkar N et al (2005) Genomic alterations in cultured human embryonic stem cells. Nat Genet 37:1099–1103. doi:10.1038/ng1631

    Article  PubMed  CAS  Google Scholar 

  7. Chen K, Wu L, Wang ZZ (2008) Extrinsic regulation of cardiomyocyte differentiation of embryonic stem cells. J Cell Biochem 104:119–128

    Article  PubMed  CAS  Google Scholar 

  8. Vassalli G, Vanderheyden M, Renders F et al (2007) Bone marrow stem cell therapy for cardiac repair: challenges and perspectives. Minerva Cardioangiol 55:659–667

    PubMed  CAS  Google Scholar 

  9. Van’t HW, Mal N, Huang Y et al (2007) Direct delivery of syngeneic and allogeneic large-scale expanded multipotent adult progenitor cells improves cardiac function after myocardial infarct. Cytotherapy 9:477–487. doi:10.1080/14653240701452065

    Article  Google Scholar 

  10. Caspi O, Huber I, Kehat I et al (2007) Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. J Am Coll Cardiol 50:1884–1893. doi:10.1016/j.jacc.2007.07.054

    Article  PubMed  Google Scholar 

  11. Song YH, Gehmert S, Sadat S et al (2007) VEGF is critical for spontaneous differentiation of stem cells into cardiomyocytes. Biochem Biophys Res Commun 354:999–1003. doi:10.1016/j.bbrc.2007.01.095

    Article  PubMed  CAS  Google Scholar 

  12. Nakagami H, Morishita R, Maeda K et al (2006) Adipose tissue-derived stromal cells as a novel option for regenerative cell therapy. J Atheroscler Thromb 13:77–81

    PubMed  Google Scholar 

  13. Zhu YX, Liu TQ, Song KD et al (2008) Adipose tissue-derived stem cell: a better stem cell than BMSC. Cell Biochem Funct 26:664–675. doi:10.1002/cbf.1488

    Article  PubMed  CAS  Google Scholar 

  14. Moon MH, Kim SY, Kim YJ et al (2006) Human adipose tissue-derived mesenchymal stem cells improve postnatal neovascularization in a mouse model of hindlimb ischemia. Cell Physiol Biochem 17:279–290. doi:10.1159/000094140

    Article  PubMed  CAS  Google Scholar 

  15. Planat-Bénard V, Menard C, André M, Puceat M et al (2004) Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circ Res 94:223–229. doi:10.1161/01.RES.0000109792.43271.47

    Article  PubMed  Google Scholar 

  16. Zhang DZ, Gai LY, Liu HW et al (2007) Transplantation of autologous adipose-derived stem cells ameliorates cardiac function in rabbits with myocardial infarction. Chinese Medical Journal 120:300–307

    PubMed  Google Scholar 

  17. Moscoso I, Centeno A, Lopez E et al (2005) Differentiation “in vitro” of primary and immortalized porcine mesenchymal stem cells into cardiomyocytes for cell transplantation. Transplant Proc 37:481–482. doi:10.1016/j.transproceed.2004.12.247

    Article  PubMed  CAS  Google Scholar 

  18. Rangappa S, Fen C, Lee EH et al (2003) Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes. Ann Thorac Surg 75:775–779. doi:10.1016/S0003-4975(02)04568-X

    Article  PubMed  Google Scholar 

  19. Helder MN, Knippenberg M, Klein-Nulend J et al (2007) Stem cells from adipose tissue allow challenging new concepts for regenerative medicine. Tissue Eng 13:1799–1808. doi:10.1089/ten.2006.0165

    Article  PubMed  CAS  Google Scholar 

  20. Antonitsis P, Ioannidou-Papagiannaki E, Kaidoglou A et al (2007) In vitro cardiomyogenic differentiation of adult human bone marrow mesenchymal stem cells. The role of 5-azacytidine. Interact Cardiovasc Thorac Surg 6:593–597. doi:10.1510/icvts.2007.157875

    Article  PubMed  Google Scholar 

  21. Yoon J, Min BG, Kim YH et al (2005) Differentiation, engraftment and functional effects of pre-treated mesenchymal stem cells in a rat myocardial infarct model. Acta Cardiol 60:277–284. doi:10.2143/AC.60.3.2005005

    Article  PubMed  Google Scholar 

  22. Garbade J, Schubert A, Rastan AJ et al (2005) Fusion of bone marrow-derived stem cells with cardiomyocytes in a heterologous in vitro model. Eur J Cardiothorac Surg 28:685–691. doi:10.1016/j.ejcts.2005.06.047

    Article  PubMed  Google Scholar 

  23. Li XH, Yu XY, Lin QX et al (2007) Bone marrow mesenchymal stem cells differentiate into functional cardiac phenotypes by cardiac microenvironment. J Mol Cell Cardiol 42:295–303. doi:10.1016/j.yjmcc.2006.07.002

    Article  PubMed  CAS  Google Scholar 

  24. Rangappa S, Entwistle JWC, Wechsler AS et al (2003) Cardiomyocyte-mediated contact programs human mesenchymal stem cells to express cardiogenic phenotype. J Thorac Cardiovasc Surg 126:124–132. doi:10.1016/S0022-5223(03)00074-6

    Article  PubMed  CAS  Google Scholar 

  25. Schuleri KH, Boyle AJ, Hare JM (2007) Mesenchymal stem cells for cardiac regenerative therapy. Handb Exp Pharmacol 180:195–218

    Article  PubMed  CAS  Google Scholar 

  26. Mygind T, Stiehler M, Baatrup A et al (2007) Mesenchymal stem cell ingrowth and differentiation on coralline hydroxyapatite scaffolds. Biomaterials 28:1036–1047. doi:10.1016/j.biomaterials.2006.10.003

    Article  PubMed  CAS  Google Scholar 

  27. Guldner NW, Kajahn J, Klinger M et al (2006) Autonomously contracting human cardiomyocytes generated from adult pancreatic stem cells and enhanced in co-cultures with myocardial biopsies. Int J Artif Organs 29:1158–1166

    PubMed  CAS  Google Scholar 

  28. Belema BF, Technau A, Ebelt H et al (2005) Activation of myogenic differentiation pathways in adult bone marrow-derived stem cells. Mol Cell Biol 25:9509–9519. doi:10.1128/MCB.25.21.9509-9519.2005

    Article  Google Scholar 

  29. Yang XN, Tian ZW, Huang HB et al (2005) The culture of myocardiac cells isolated from neonatal rats in vitro. Anat J 28:360–361

    Google Scholar 

  30. Zhao H, Whitfield ML, Xu T et al (2004) Diverse effects of methylseleninic acid on the transcriptional program of human prostate cancer cells. Mol Biol Cell 15:506–519. doi:10.1091/mbc.E03-07-0501

    Article  PubMed  CAS  Google Scholar 

  31. Liao R, Pfister O, Jain M et al (2007) The bone marrow—cardiac axis of myocardial regeneration. Prog Cardiovasc Dis 50:18–30. doi:10.1016/j.pcad.2007.03.001

    Article  PubMed  CAS  Google Scholar 

  32. Camelliti P, McCulloch AD, Kohl P (2005) Microstructured co-cultures of cardiac myocytes and fibroblasts: a two-dimensional in vitro model of cardiac tissue. Microsc Microanal 11:249–259. doi:10.1017/S1431927605050506

    Article  PubMed  CAS  Google Scholar 

  33. Gaustad KG, Boquest AC, Anderson BE et al (2004) Differentiation of human adipose tissue stem cells using extracts of rat cardiomyocytes. Biochem Biophys Res Commun 314:420–427. doi:10.1016/j.bbrc.2003.12.109

    Article  PubMed  CAS  Google Scholar 

  34. Strem BM, Zhu M, Alfonso Z et al (2005) Expression of cardiomyocytic markers on adipose tissue-derived cells in a murine model of acute myocardial injury. Cytotherapy 7:282–291. doi:10.1080/14653240510027226

    Article  PubMed  CAS  Google Scholar 

  35. Xu M, Wani M, Dai YS et al (2004) Differentiation of bone marrow stromal cells into the cardiac phenotype requires intercellular communication with myocytes. Circulation 110:2658–2665. doi:10.1161/01.CIR.0000145609.20435.36

    Article  PubMed  Google Scholar 

  36. Chen J, Wang C, Lu S et al (2005) In vivo chondrogenesis of adult bone-marrow-derived autologous mesenchymal stem cells. Cell Tissue Res 319:429–438. doi:10.1007/s00441-004-1025-0

    Article  PubMed  Google Scholar 

  37. Li HW, Yu B, Zhang Y et al (2006) Jagged1 protein enhances the differentiation of mesenchymal stem cells into cardiomyocytes. Biochem Biophys Res Commun 341:320–325. doi:10.1016/j.bbrc.2005.12.182

    Article  PubMed  CAS  Google Scholar 

  38. Bin Z, Sheng LG, Gang ZC et al (2006) Efficient cardiomyocyte differentiation of embryonic stem cells by bone morphogenetic protein-2 combined with visceral endoderm-like cells. Cell Biol Int 30:769–776. doi:10.1016/j.cellbi.2006.05.011

    Article  PubMed  Google Scholar 

  39. Passier R, Oostwaard DWV, Snapper J et al (2005) Increased cardiomyocyte differentiation from human embryonic stem cells in serum-free cultures. Stem Cells 23:772–780. doi:10.1634/stemcells.2004-0184

    Article  PubMed  CAS  Google Scholar 

  40. Eberli D, Atala A (2006) Tissue engineering using adult stem cells. Methods Enzymol 420:287–302. doi:10.1016/S0076-6879(06)20013-2

    Article  PubMed  CAS  Google Scholar 

  41. Bai XW, Pinkernell K, Song YH et al (2007) Genetically selected stem cells from human adipose tissue express cardiac markers. Biochem Biophys Res Commun 353:665–671. doi:10.1016/j.bbrc.2006.12.103

    Article  PubMed  CAS  Google Scholar 

  42. Bai XW, Ma JY, Pan ZZ et al (2007) Electrophysiological properties of human adiose tissue-derived stem cells. Am J Physiol Cell Physiol 293:1539–1550. doi:10.1152/ajpcell.00089.2007

    Article  Google Scholar 

  43. Terada N, Hamazaki T, Oka M et al (2002) Bone marrow cells adopt the phenotype of other cells by pontaneous fusion. Nature 416:542–545. doi:10.1038/nature730

    Article  PubMed  CAS  Google Scholar 

  44. Ying QL, Nichols J, Evans EP et al (2002) Changing potency by spontaneous fusion. Nature 416:545–548. doi:10.1038/nature729

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by The National Natural Sciences Foundation of China and Young Teacher Culture Foundation of Dalian University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianqing Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Y., Liu, T., Song, K. et al. ADSCs differentiated into cardiomyocytes in cardiac microenvironment. Mol Cell Biochem 324, 117–129 (2009). https://doi.org/10.1007/s11010-008-9990-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9990-3

Keywords

Navigation