Skip to main content
Log in

Novel methods of genome shuffling in Saccharomyces cerevisiae

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Genome shuffling can improve complex phenotypes; however, there are several obstacles towards its broader applicability due to increased complexity of eukaryotic cells. Here, we describe novel, efficient and reliable methods for genome shuffling to increase ethanol production of Saccharomyces cerevisiae. Using yeast sexual and asexual reproduction by itself, mutant diploid cells were shuffled through highly efficient sporulation and adequate cross among the haploid cells, followed by selection on the special plates. The selected strain obtained after three round genome shuffling not only distinctly improved the resistance to ethanol, but also, increased ethanol yield by up to 13% compared with the control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Dai MH, Copley SD (2004) Genome shuffling improves degradation of the anthropogenic pesticide pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723. Appl Environ Microbiol 70:2391–2397

    Article  PubMed  CAS  Google Scholar 

  • Devantier R, Pedersen S, Olsson L (2005a) Characterization of very high gravity ethanol fermentation of corn mash. Effect of glucoamylase dosage, pre-saccharification and yeast strain. Appl Microbiol Biotechnol 68:622–629

    Article  PubMed  CAS  Google Scholar 

  • Devantier R, Scheithauer B, Granato Villas-Bo S, Pedersen S, Olsson L (2005b) Metabolite profiling for analysis of yeast stress response during very high gravity ethanol fermentations. Biotechnol Bioeng 90:703–714

    Article  PubMed  CAS  Google Scholar 

  • Giudici P, Solieri L, Pulvirenti AM, Cassanelli S (2005) Strategies and perspectives for genetic improvement of wine yeasts. Appl Microbiol Biotechnol 66:622–628

    Article  PubMed  CAS  Google Scholar 

  • Herman PK, Rine J (1997) Yeast spore germination: a requirement for Ras protein activity during re-entry into the cell cycle. EMBO J 16:6171–6181

    Article  PubMed  CAS  Google Scholar 

  • Hida H, Yamada T, Yamada Y (2007) Genome shuffling of Streptomyces sp. U121 for improved production of hydroxycitric acid. Appl Microbiol Biotechnol 73:1387–1393

    Article  PubMed  CAS  Google Scholar 

  • Houston P, Simon PJ, Broach JR (2004) The Saccharomyces cerevisiae recombination enhancer biases recombination during interchromosomal mating-type switching but not in interchromosomal homologous recombination. Genetics 166:1187–1197

    Article  PubMed  CAS  Google Scholar 

  • Jones RP (1989) Biological principles for the effects of ethanol. Enzym Microb Technol 11:130–153

    Article  CAS  Google Scholar 

  • Lawrence CW (2004) Guide to yeast genetics and molecular and cell biology. Methods in enzymology, Part A. Elsevier Academic Press, New York, 194 pp

  • Mayer WV, Aguilera A (1990) High levels of chromosome instability in polyploids of Saccharomyces cerevisiae. Mutat Res 231:177–186

    PubMed  CAS  Google Scholar 

  • Patnaik R, Louie S, Gavrilovic V, Stemmer WPC, Ryan CM, Cardayre S (2002) Genome shuffling of Lactobacillus for improved acid tolerance. Nature Biotechnol 20:707–712

    Article  CAS  Google Scholar 

  • Rautio JJ, Huuskonen A, Vuokko H, Vidgren V, Londesborough J (2007) Monitoring yeast physiology during very high gravity wort fermentations by frequent analysis of gene expression. Yeast 24:741–760

    Article  PubMed  CAS  Google Scholar 

  • Steinmeta LM, Sinha H, Richaeds DR, Spiegelman JI, Oefner PJ, McCusker JH, Davis RW (2002) Dissecting the architecture of a quantitative trait locus in yeast. Nature 416:326–330

    Article  Google Scholar 

  • Stephanopoulos G (2002) Metabolic engineering by genome shuffling. Nat Biotechnol 20:666–668

    Article  PubMed  CAS  Google Scholar 

  • Wei P, Li Z, He P, Lin Y, Jiang N (2008) Genome shuffling of ethanologenic yeast Candida krusei for improved acetic acid tolerance. Biotechnol Appl Biochem 49:113–128

    Article  PubMed  CAS  Google Scholar 

  • Yu L, Pei X, Lei T, Wang Y, Feng Y (2008) Genome shuffling enhanced l-lactic acid production by improving glucose tolerance of Lactobacillus rhamnosus. J Biotechnol 134:154–159

    Article  PubMed  CAS  Google Scholar 

  • Zhang YX, Perry K, Vinci VA, Powell K, Stemmer WPC, Cardayre SB (2002) Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415:644–646

    Article  PubMed  CAS  Google Scholar 

  • Zhao K, Ping W, Zhang L, Liu J, Lin Y, Jin T, Zhou D (2008) Screening and breeding of high taxol producing fungi by genome shuffling. Sci China Ser C-Life Sci 51:222–231

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihua Hou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, L. Novel methods of genome shuffling in Saccharomyces cerevisiae . Biotechnol Lett 31, 671–677 (2009). https://doi.org/10.1007/s10529-009-9916-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-009-9916-5

Keywords

Navigation