Skip to main content
Log in

gTME for Improved Xylose Fermentation of Saccharomyces cerevisiae

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Global transcription machinery engineering (gTME) is an approach for reprogramming gene transcription to elicit cellular phenotypes important for technological applications. In our study, the application of gTME to Saccharomyces cerevisiae was to improve xylose utilization and tolerance, which is a key trait for many biofuel programs. Mutation of the transcription factor spt15 was introduced by error-prone polymerase chain reaction and then screened on media using xylose as the sole carbon source. The selected out strain spt15-25 showed modest growth rates in the media containing 50, 100, and 150 g/L of xylose or glucose. Under the following fermentation condition: 30 °C, rotating speed of 200 r/min, 500-mL Erlenmeyer flask containing 100-mL media, after 109 h, 93.5% of xylose was consumed in 50 g/L xylose medium. Meanwhile, 98.3% glucose can be metabolized in 50-g/L glucose medium. And the carbon source was 50 g/L glucose–xylose (w/w = 1); the utilization ratio of xylose and glucose was 90.8% and 97.3%, respectively. And all the xylitol concentration was below 2.48 g/L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. This refers to the utilization rate of 25 g/L glucose in mixed sugar after 50 h which was 97.3% in the paper.

References

  1. Nigam, J. N. (2001). Development of xylose-fermenting yeast Pichia stipitis for ethanol production through adaptation on hardwood hemicellulose acid prehydrolysate. Journal of Applied Microbiology, 90, 208–215. doi:10.1046/j.1365-2672.2001.01234.x.

    Article  CAS  Google Scholar 

  2. Slininger, P. J., Bothast, R. J., Van Cauwenberge, J. E., et al. (1982). Conversion of D-xylose to ethanol by the yeast Pachysolen tannophilus. Biotechnology and Bioengineering, 14, 37–384.

    Google Scholar 

  3. Tang, Y., An, M., Liu, K., et al. (2006). Ethanol production from acid hydrolysate of wood biomass using the flocculating yeast Saccharomyces cerevisiae strain KF-7. Process Biochemistry, 41(4), 909–914. doi:10.1016/j.procbio.2005.09.008.

    Article  CAS  Google Scholar 

  4. Goffeau, A., Barrell, B. G., Bussey, B., et al. (1996). Life with 6000 genes. Science, 274(5287), 546, 563–567. doi:10.1126/science.274.5287.546.

    Article  Google Scholar 

  5. Batt, C. A., Carvallo, S., Easson, D. D., et al. (1986). Direct evidence for a xylose metabolic pathway in Saccharomyces cerevisiae. Biotechnology and Bioengineering, 28, 549–553. doi:10.1002/bit.260280411.

    Article  CAS  Google Scholar 

  6. Alper, H., Moxley, J., Nevoigt, E., et al. (2006). Engineering yeast transcription machinery for improved ethanol tolerance and production. Science, 314(8), 1565–1568. doi:10.1126/science.1131969.

    Article  CAS  Google Scholar 

  7. Heluane, H., Spencer, J. F. T., Spencer, D., et al. (1993). Characterization of hybrids obtained by protoplast fusion, between Pachysolen tannophilus and Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 40, 98–100. doi:10.1007/BF00170435.

    Article  CAS  Google Scholar 

  8. Alper, H., Jin, Y.-S., Moxley, J. F., et al. (2005). Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metabolic Engineering, 7, 155–164. doi:10.1016/j.ymben.2004.12.003.

    Article  CAS  Google Scholar 

  9. Alper, H., Miyaoku, K., & Stephanopoulos, G. (2005). Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nature Biotechnology, 23, 612–616. doi:10.1038/nbt1083.

    Article  CAS  Google Scholar 

  10. Alper, H., & Stephanopoulos, G. (2007). Global transcription machinery engineering: A new approach for improving cellular phenotype. Metabolic Engineering, 9, 258–267. doi:10.1016/j.ymben.2006.12.002.

    Article  CAS  Google Scholar 

  11. Alper, H., Moxley, J., Nevoigt, E. G. R., et al. (2006). Supporting online material for engineering yeast transcription machinery for improved ethanol tolerance and production. Science, 314, 1565. doi:10.1126/science.1131969.

    Article  CAS  Google Scholar 

  12. Hemsley, A., Arnheim, N., Toney, M. D., et al. (1989). A simple method for site-directed mutagenesis using the polymerase chain reaction. Nucleic Acids Research, 17, 6545–6551. doi:10.1093/nar/17.16.6545.

    Article  CAS  Google Scholar 

  13. Robert, H., Schidst, I., Andrew, R., et al. (1995). Studies on the transformation of intact yeast cells by the LiAc/SSDNA/PEG procedure. Yeast (Chichester, England), 11, 355–360. doi:10.1002/yea.320110408.

    Article  Google Scholar 

  14. Hallborn, J., Walfidsson, M., Airaksinen, U., et al. (1991). Xylitol production by recombinant Saccharomyces cerevisiae. Bio Technology, 9, 1090–1095.

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the National Natural Science Foundation of China (No.U0733001) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Yan, M., Lai, C. et al. gTME for Improved Xylose Fermentation of Saccharomyces cerevisiae . Appl Biochem Biotechnol 160, 574–582 (2010). https://doi.org/10.1007/s12010-008-8431-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8431-9

Keywords

Navigation