Skip to main content
Log in

Assessment of Physical Process Conditions for Enhanced Production of Novel Glutaminase-Free L-Asparaginase from Pectobacterium carotovorum MTCC 1428

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Statistically based experimental design was applied to maximize the production of glutaminase-free L-asparaginase from Pectobacterium carotovorum MTCC 1428. The effect of physical process parameters (initial pH of the medium, temperature, rpm of the shaking incubator, and inoculum size) on the production of L-asparaginase from P. carotovorum MTCC 1428 was studied using central composite design technique. The individual optimum levels of initial pH of the medium, temperature, rpm of shaking incubator, and inoculum size were found to be 6.90, 29.8 °C, 157 rpm, and 2.61% (v/v), respectively, for the production of L-asparaginase. After physical process parameters optimization, the production and productivity of L-asparaginase was enhanced by 26.39% (specific activity) and 10.19%, respectively. Maximization of L-asparaginase production was achieved at 12 h under optimal levels of physical process parameters in shake flask level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Athale, U. H., & Chan, K. C. A. (2003). Thrombosis Research, 111, 199–212.

    Article  CAS  Google Scholar 

  2. Narta, U. K., Kanwar, S. S., & Azmi, W. (2007). Critical Reviews in Oncology/Hematology, 61, 208–221.

    Article  Google Scholar 

  3. Manna, S., Sinha, A., Sadhukhan, R., & Chakrabarty, S. L. (1995). Current Microbiology, 30, 291–298.

    Article  CAS  Google Scholar 

  4. Muller, H. J., & Boos, J. (1998). Critical Reviews in Oncology/Hematology, 28, 97–113.

    Article  CAS  Google Scholar 

  5. Pedreschi, F., Kaack, K., & Granby, K. (2008). Food Chemistry, 109, 386–392.

    Article  CAS  Google Scholar 

  6. Teodor, E., Litescu, S. C., Lazar, V., & Somoghi, R. (2009). Journal of Materials Science: Materials in Medicine, 20, 1307–1314.

    Article  CAS  Google Scholar 

  7. Verma, N., Kumar, K., Kaur, G., & Anand, S. (2007). Artificial Cells, Blood Substitutes, and Immobilization Biotechnology, 35, 449–456.

    Article  CAS  Google Scholar 

  8. Kotzia, G. A., & Labrou, N. E. (2007). Journal of Biotechnology, 127, 657–669.

    Article  CAS  Google Scholar 

  9. Khan, A. A., Pal, S. P., Raghavan, S. R. V., & Bhattacharyya, P. K. (1970). Biochemical and Biophysical Research Communications, 41, 525–533.

    Article  CAS  Google Scholar 

  10. Maladkar, N. K., Singh, V. K., & Naik, S. R. (1993). Hindustan Antibiotics Bulletin, 35, 77–86.

    CAS  Google Scholar 

  11. Wei, D. Z., & Liu, H. (1998). Biotechnology Techniques, 12, 129–131.

    Article  CAS  Google Scholar 

  12. Mukherjee, J., Majumdar, S., & Scheper, T. (2000). Applied Microbiology and Biotechnology, 53, 180–184.

    Article  CAS  Google Scholar 

  13. Hymavathi, M., Sathish, T., Subba Rao, Ch, & Prakasham, R. S. (2009). Applied Biochemistry and Biotechnology, 159, 191–198.

    Article  CAS  Google Scholar 

  14. Prakasham, R. S., Hymavathi, M., Subba Rao, Ch, Arepalli, S. K., Venkateswara Rao, J., Kavin Kennady, P., et al. (2010). Applied Biochemistry and Biotechnology, 160, 72–80.

    Article  CAS  Google Scholar 

  15. Abdel-Fattah, Y. R., & Olama, Z. A. (2002). Process Biochemistry, 38, 115–122.

    Article  CAS  Google Scholar 

  16. Fisher, S. H., Wray, & Jr, L. V. (2002). Journal of Bacteriology, 184, 2148–2154.

    Article  CAS  Google Scholar 

  17. Mishra, A. (2007). Applied Biochemistry and Biotechnology, 135, 33–42.

    Article  Google Scholar 

  18. Myers, R. H., & Montgomery, D. C. (2002). Response surface methodology: process and product optimization using designed experiments. New York: Wiley.

    Google Scholar 

  19. Lee, H., Song, M., & Hwang, S. (2003). Process Biochemistry, 38, 1685–1693.

    Article  CAS  Google Scholar 

  20. Bocchini, D. A., Alves-Prado, H. F., & Baida, L. C. (2002). Process Biochemistry, 38, 727–731.

    Article  CAS  Google Scholar 

  21. Beg, Q. K., Sahai, V., & Gupta, R. (2003). Process Biochemistry, 39, 203–209.

    Article  CAS  Google Scholar 

  22. Li, C., Bai, J., Cai, Z., & Ouyang, F. (2001). Journal of Biotechnology, 93, 27–34.

    Article  Google Scholar 

  23. Gulati, R., Saxena, R. K., & Gupta, R. (1997). Letter in Applied Microbiology, 24, 23–26.

    Article  CAS  Google Scholar 

  24. Kumar, S., Pakshirajan, K., & Dasu, V. V. (2009). Applied Microbiology and Biotechnology, 84, 477–486.

    Article  CAS  Google Scholar 

  25. Mashburn, L. T., & Wriston, J. C., Jr. (1964). Archives of Biochemistry and Biophysics, 105, 450–452.

    Article  CAS  Google Scholar 

  26. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, J. R. (1951). The Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  27. Box, G. E. P., & Hunter, J. S. (1957). Annals of Mathematical Statistics, 28, 195–241.

    Article  Google Scholar 

  28. Box, G. E. P., & Wilson, K. B. (1951). Journal of the Royal Statistical Society, 13, 1–45.

    Google Scholar 

  29. Araujo, P. W., & Brereton, R. G. (1996). Trends in Analytical Chemistry, 15, 63–70.

    CAS  Google Scholar 

  30. Kumar, S., Dasu, V. V., & Pakshirajan, K. (2010). Process Biochemistry, 45, 223–229.

    Article  CAS  Google Scholar 

  31. Box, G. E. P., & Draper, N. R. (1987). Empirical Model Building and Response Surfaces. New York: John Wiley and Sons.

    Google Scholar 

  32. Geckil, H., & Gencer, S. (2004). Applied Microbiology and Biotechnology, 63, 691–697.

    Article  CAS  Google Scholar 

  33. Ellaiah, P., Adinarayana, K., Bhavani, Y., Padmaja, P., & Srinivasulu, A. (2002). Process Biochemistry, 38, 615–620.

    Article  CAS  Google Scholar 

  34. Motta, A. S., & Brandelli, A. (2008). World Journal of Microbiology & Biotechnology, 24, 641–646.

    Article  CAS  Google Scholar 

  35. Adinarayana, K., Prabhakar, T., Srinivasulu, V., Anitha, R. M., Jhansi, L. P., & Ellaiah, P. (2003). Process Biochemistry, 39, 171–177.

    Article  CAS  Google Scholar 

  36. Lotfy, W. A., Ghanem, K. M., & El-Helow, E. R. (2007). Bioresource Technology, 98, 3470–3477.

    Article  CAS  Google Scholar 

  37. Rahulan, R., Nampoothiria, K. M., Szakacs, G., Nagy, V., & Pandey, A. (2009). Biochemical Engineering Journal, 43, 64–71.

    Article  CAS  Google Scholar 

  38. Prakasham, R. S., Subba Rao, Ch, Rao, R. S., Lakshmi, G. S., & Sarma, P. N. (2007). Journal of Applied Microbiology, 102, 1382–1391.

    Article  CAS  Google Scholar 

  39. Neto, D. C., Buzato, J. B., & Borsato, e D. (2006). Acta Scientiarum—Technology, 28, 151–153.

    Google Scholar 

  40. Raha, S. K., Roy, S. K., Dey, S. K., & Chakrabarty, S. L. (1990). Biochemistry International, 21, 987–1000.

    CAS  Google Scholar 

  41. Nawaz, M. S., Zhang, D., Khan, A. A., & Cerniglia, C. E. (1998). Applied Microbiology and Biotechnology, 50, 568–572.

    Article  CAS  Google Scholar 

  42. El-Bessoumy, A. A., Sarhan, M., & Mansour, J. (2004). Journal of Biochemistry and Molecular Biology, 37, 387–393.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkata Dasu Veeranki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S., Veeranki, V.D. & Pakshirajan, K. Assessment of Physical Process Conditions for Enhanced Production of Novel Glutaminase-Free L-Asparaginase from Pectobacterium carotovorum MTCC 1428. Appl Biochem Biotechnol 163, 327–337 (2011). https://doi.org/10.1007/s12010-010-9041-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-9041-x

Keywords

Navigation