Skip to main content
Log in

Evaluation of Antineoplastic Activity of Extracellular Asparaginase Produced by Isolated Bacillus circulans

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

l-Asparaginase is an important component in the treatment of acute lymphoblastic leukemia in children. Its antineoplastic activity toward malignant cells is due to their characteristic nature in slow synthesis of l-asparagine (Asn), which causes starvation for this amino acid, while normal cells are protected from Asn starvation due to their ability to produce this amino acid. The relative selectivity with regard to the metabolism of malignant cells forces to look for novel asparaginase with little glutaminase-producing systems compared to existing enzyme. In this investigation, the role of the extracellular asparaginase enzyme produced by an isolated bacterial strain was studied. Biochemical characterization denoted that this isolated bacterial strain belongs to the Bacillus circulans species. The strain was tested for l-asparaginase production, and it was observed that, under an optimized environment, this isolate produces a maximum of 85 IU ml−1 within 24-h incubation. This enzyme showed less (60%) glutaminase activity compared to commercial Erwinia sp. l-asparaginase. The partially purified enzyme showed an approximate molecular weight of 140 kDa. This enzyme potency in terms of antineoplastic activity was analyzed against the cancer cells, CCRF-CEM. Flow cytometry experiments indicated an increase of sub-G1 cell population when the cells were treated with l-asparaginase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Reference

  1. Kristiansen, T., Einarsson, M., Sundberg, L., & Porath, J. (1970). FEBS Letters, 7(3), 294–296. doi:10.1016/0014-5793(70)80186-7.

    Article  CAS  Google Scholar 

  2. Lee, S. M., Wroble, M. H., & Ross, J. T. (1989). Applied Biochemistry and Biotechnology, 22, 1–11. doi:10.1007/BF02922693.

    Article  CAS  Google Scholar 

  3. Duval, M., Suciu, S., Ferster, A., Rialland, X., Nelken, B., Lutz, P., et al. (2002). Blood, 99, 2734–2739. doi:10.1182/blood.V99.8.2734.

    Article  CAS  Google Scholar 

  4. Broome, J. D. (1961). Nature, 191, 1114–1115. doi:10.1038/1911114a0.

    Article  CAS  Google Scholar 

  5. Yellin, T. O., & Wriston, J. C. (1966). Biochemistry, 5, 1605–1612. doi:10.1021/bi00869a022.

    Article  CAS  Google Scholar 

  6. Mashburn, L., & Wriston, J. C. (1964). Archives of Biochemistry and Biophysics, 105, 450–452. doi:10.1016/0003-9861(64)90032-3.

    Article  CAS  Google Scholar 

  7. Campbell, H., & Mashburn, L. (1969). Biochemistry, 9, 3768–3775. doi:10.1021/bi00837a042.

    Article  Google Scholar 

  8. Ho, D., Thetford, B., Carter, C., & Frei, E. (1978). Clinical Pharmacology and Therapeutics, 11, 408–417.

    Google Scholar 

  9. Sarquis, M. I. D. M., Oliveira, E. M. M., Santos, A. S., & da Costa, G. L. (2004). Mem Inst Oswaldo Cruz, Rio de Janeiro, 99, 489–492.

    CAS  Google Scholar 

  10. Swain, A. L., Jaskolski, M., Housset, D., Mohana Rao, J. K., & Wlodawer, A. (1993). Proc. Natl Acad Sci USA, 90, 1474–1478. doi:10.1073/pnas.90.4.1474.

    Article  CAS  Google Scholar 

  11. Cornea, C. P., Lupescu, I., Vatafu, I., Savoiu, V. G., & Campeanu, G. H. (2000). Roum. Biotechnology Letters, 5, 471–478.

    CAS  Google Scholar 

  12. Liu, F. S., & Zajic, J. E. (1973). Applied Microbiology, 25, 92–96.

    CAS  Google Scholar 

  13. Manna, S., Sinha, A., Sadhukhan, R., & Chakrabarty, S. L. (1995). Current Microbiology, 30, 291–298. doi:10.1007/BF00295504.

    Article  CAS  Google Scholar 

  14. Abdel-Fattah, Y. R., & Olama, Z. A. (2002). Process Biochem, 38, 115–122. doi:10.1016/S0032-9592(02)00067-5.

    Article  CAS  Google Scholar 

  15. Radcliffe, C. W., Kafkewitz, D., & Abuchowski, A. (1979). Applied and Environmental Microbiology, 38, 761–762.

    CAS  Google Scholar 

  16. Prakasham, R. S., Subba Rao, Ch, Sreenivas Rao, R., Suvarna Lakshmi, G., & Sarma, P. N. (2007). J Appl. Microbiol., 102, 1382–1391. doi:10.1111/j.1365-2672.2006.03173.x.

    Article  CAS  Google Scholar 

  17. Wriston, J. C., & Yellin, T. O. (1973). Advances in Enzymology, 39, 185–248. doi:10.1002/9780470122846.ch3.

    CAS  Google Scholar 

  18. Eden, O. B., Shaw, M. P., Lilleyman, J. S., & Richards, S. (1990). Medical and Pediatric Oncology, 18, 497–502. doi:10.1002/mpo.2950180612.

    Article  CAS  Google Scholar 

  19. Asselin, B. L., Lorenson, M. Y., & Whitin, J. C. (1993). Journal of Clinical Oncology, 11, 1780–1786.

    CAS  Google Scholar 

  20. Laemmli, U. K. (1970). Nature, 227, 680–685. doi:10.1038/227680a0.

    Article  CAS  Google Scholar 

  21. Mosmann, T. (1988). Journal of Immunological Methods, 65, 55–63. doi:10.1016/0022-1759(83)90303-4.

    Article  Google Scholar 

  22. Jackon, R. D., & Handschumacher, R. E. (1970). Biochemistry, 9, 3585–3590. doi:10.1021/bi00820a013.

    Article  Google Scholar 

  23. Maita, T., & Matsuda, G. (1980). Hoppe-Seyler’s Zeitschrift fur Physiologische Chemie, 361, 105–117.

    CAS  Google Scholar 

  24. Kiriyama, Y., Kubota, M., Takimoto, T., et al. (1989). Leukemia, 3, 294–297.

    CAS  Google Scholar 

  25. Prager, M. D., & Bachynsky, N. (1968). Biochemical and Biophysical Research Communications, 31, 43–47. doi:10.1016/0006-291X(68)90028-4.

    Article  CAS  Google Scholar 

  26. Asselin, B. L., Ryan, D., & Frantz, C. N. (1989). Cancer Research, 49, 4363–4369.

    CAS  Google Scholar 

  27. Ueno, T., Ontawa, K., Mitusi, K., et al. (1977). Leukemia, 11, 1858–1861. doi:10.1038/sj.leu.2400834.

    Article  Google Scholar 

  28. Shimizu, T., Kubota, M., & Adachi, S. (1992). International Journal of Cancer, 50, 644–648. doi:10.1002/ijc.2910500427.

    Article  CAS  Google Scholar 

  29. Kurtzberg, J., Yousem, D., & Beauchamp, N. (2003). Cancer Medicine (Vol. IV, pp. 699–705). USA: American Cancer Society. section 13 (Edited by J Holland, E Fries, J Kurtzberg).

    Google Scholar 

  30. Chemocare.com. http://www.chemocare.com/bio/erwinia_lasparaginase.asp

Download references

Acknowledgments

Authors, Mr Ch Subba Rao and M Hymavathi, are thankful for the financial support in the form of fellowship from CSIR and UGC, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Prakasham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prakasham, R.S., Hymavathi, M., Subba Rao, C. et al. Evaluation of Antineoplastic Activity of Extracellular Asparaginase Produced by Isolated Bacillus circulans . Appl Biochem Biotechnol 160, 72–80 (2010). https://doi.org/10.1007/s12010-009-8679-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8679-8

Keywords

Navigation