Skip to main content
Log in

Hydrogel-magnetic nanoparticles with immobilized l-asparaginase for biomedical applications

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The association of magnetic nanoparticles, which could be controlled by a magnetic field and have dimensions which facilitate their penetration in cells/tissues, with hydrogel type biopolymeric shells confer them compatibility and the capacity to retain and deliver bioactive substances. The main objective of this work is the development of a new system based on a biocompatible polymer with organic–inorganic structure capable of vectoring support for biologic active agents (l-asparaginase, e.g.). Characterization of size and morphology of the hydrogel-magnetic nanoparticles with entrapped l-asparaginase was made using Dynamic Light Scattering method, Transmission Electron Microscopy and Confocal Microscopy. The structure of magnetic nanoparticles coated with hydrogel was characterized by Fourier Transformed Infrared Spectroscopy. The cytotoxicity of nanoparticles was evaluated and also the interactions with microorganisms. We obtained hydrogel-magnetic nanoparticles with l-asparaginase entrapped, with sizes below 30 nm in dried stage, capable to penetrate the cells and tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.N.V.R. Kumar, J. Pharm. Sci. 3, 234 (2000)

    Google Scholar 

  2. D. Cu, H. Gao, Biotechnol. Prog. 219, 683 (2003). doi:10.1021/bp025791i

    Article  Google Scholar 

  3. P.A. Dresco, V.S. Zaitsev, R.J. Gambino, B. Chu, Langmuir 15, 1945 (1999). doi:10.1021/la980971g

    Article  CAS  Google Scholar 

  4. P. Tartaj, M.P. Morales, S. Veintemillas-Verdaguer, T. Gonzalez-Carreno, C.J. Serna, J. Phys. D Appl. Phys. 36, R182 (2003). doi:10.1088/0022-3727/36/13/202

    Article  ADS  CAS  Google Scholar 

  5. M.H. Liao, D.H. Chen, Biotechnol. Lett. 23, 1723 (2001). doi:10.1023/A:1012485221802

    Article  CAS  Google Scholar 

  6. S.H. Huang, M.H. Liao, D.H. Chen, Biotechnol. Prog. 19, 1095 (2003). doi:10.1021/bp025587v

    Article  PubMed  CAS  Google Scholar 

  7. K.C. Kulla, M.D. Gooda, M.S. Thakur, N.G. Karanth, Biosens. Bioelectron. 19, 621 (2004). doi:10.1016/S0956-5663(03)00258-6

    Article  Google Scholar 

  8. M. Przybyt, Mater. Sci. 21, 398 (2003)

    Google Scholar 

  9. G.K. Kouassi, J. Irudayaraj, G. McCarty, J. Nanobiotechnol. 3, 1 (2005). doi:10.1186/1477-3155-3-1

    Article  Google Scholar 

  10. R. Masteikova, Z. Chalupova, Z. Sklubalova, Medicina (B Aires) 39, 19 (2003)

    Google Scholar 

  11. J.S. Mao, H.F. Liu, Y.J. Yin, K.D. Yao, Biomaterials 24, 1621 (2003). doi:10.1016/S0142-9612(02)00549-5

    Article  PubMed  CAS  Google Scholar 

  12. E.T. Baran, J.F. Mano, R.L. Reis, J. Mater. Sci.: Mater. Med. 18, 759 (2004). doi:10.1023/B:JMSM.0000032815.86972.5e

    Article  Google Scholar 

  13. Y. Luo, K. Kirker, G. Prestwich, J. Control Release 69, 169 (2000). doi:10.1016/S0168-3659(00)00300-X

    Article  PubMed  CAS  Google Scholar 

  14. X.Z. Shu, K.J. Zhu, J. Microencapsul. 18, 237 (2001). doi:10.1080/02652040010000415

    Article  PubMed  CAS  Google Scholar 

  15. G. Abatangelo, P. Weigel, New Frontiers in Medical Sciences: Redefining Hyaluronan (Elsevier, Amsterdam, 2000)

    Google Scholar 

  16. N. Verma, K. Kumar, G. Kaur, S. Anand, Crit. Rev. Biotechnol. 27, 45 (2007). doi:10.1080/07388550601173926

    Article  PubMed  CAS  Google Scholar 

  17. C.H. Fu, K.M. Sakamoto, Expert Opin. Pharmacother. 8, 1977 (2007). doi:10.1517/14656566.8.12.1977

    Article  PubMed  CAS  Google Scholar 

  18. Y.Q. Zhang, M.L. Tao, W.D. Shen, Y.Z. Zhou, Y. Ding, Y. Ma, W.L. Zhou, Biomaterials 25, 3751 (2004). doi:10.1016/j.biomaterials.2003.10.019

    Article  PubMed  CAS  Google Scholar 

  19. N. Verma, K. Kumar, G. Kaur, S. Anand, Artif. Cells Blood Substit. Immobil. Biotechnol. 35, 449 (2007). doi:10.1080/10731190701460358

    Article  PubMed  CAS  Google Scholar 

  20. C.P. Cornea, I. Lupescu, I. Vatafu, T. Caraiani, V.G. Savoiu, G. Campeanu, I. Grebenisan, G.P. Negulescu, D. Constantinescu, Rom. Biotechnol. Lett. 7, 717 (2002)

    CAS  Google Scholar 

  21. R. Massart, IEEE Trans. Magn. MAG 17, 1247 (1981). doi:10.1109/TMAG.1981.1061188

    Article  ADS  Google Scholar 

  22. E. Teodor, C. Petcu, M. Eremia, V. Lazar, G.A. Stanciu, S. Litescu in Excellence Research––A way to ERA, ed. by N. Vasiliu, L. Szabolcs (Tehnică, Braşov, 2007), section I, p. 129

  23. E. Teodor, F. Cutaş, L. Moldovan, L. Tcacenco, M. Caloianu, J. Biol. Sci. I, 35 (2003)

    Google Scholar 

  24. L. Mashburn, J. Wriston, Biochem. Biophys. Res. Commun. 12, 50 (1963). doi:10.1016/0006-291X(63)90412-1

    Article  CAS  Google Scholar 

  25. T. Mosmann, J. Immunol. Methods 65, 55 (1983). doi:10.1016/0022-1759(83)90303-4

    Article  PubMed  CAS  Google Scholar 

  26. V. Lazar, C. Balotescu, R. Cernat, D. Bulai, G. Nitu, L. Ilina, Clin. Microbiol. Infect. 9(Suppl. 1), 227 (2003)

    Google Scholar 

  27. S. Liu, X. Wei, M. Chu, J. Peng, Y. Xu, Colloids Surf. B Biointerfaces 51, 101 (2006). doi:10.1016/j.colsurfb.2006.05.023

    Article  PubMed  CAS  Google Scholar 

  28. T.Y. Liu, S.H. Hu, K.H. Liu, D.M. Liu, S.Y. Chen, J. Control Release 126, 228 (2008). doi:10.1016/j.jconrel.2007.12.006

    Article  PubMed  CAS  Google Scholar 

  29. D. Guowei, K. Adriane, X. Chen, C. Jie, L. Yinfeng, Int. J. Pharm. 328, 78 (2007). doi:10.1016/j.ijpharm.2006.07.042

    Article  PubMed  Google Scholar 

  30. D. Ma, L.M. Zhang, J. Phys. Chem. B 112, 6315 (2008). doi:10.1021/jp7115627

    Article  PubMed  CAS  Google Scholar 

  31. Y.Y. Liang, L.M. Zhang, W. Jiang, W. Li, ChemPhysChem 8, 2367 (2007). doi:10.1002/cphc.200700359

    Article  PubMed  CAS  Google Scholar 

  32. O.M. Koo, I. Rubinstein, H. Onyuksel, Nanomedicine 1, 193 (2005). doi:10.1016/j.nano.2005.06.004

    PubMed  CAS  Google Scholar 

  33. S.K. Hobbs, W.L. Monsky, F. Yuan, W.G. Roberts, L. Griffith, V.P. Torchilin et al., Proc. Natl Acad. Sci. USA 95, 4607 (1998). doi:10.1073/pnas.95.8.4607

    Article  PubMed  ADS  CAS  Google Scholar 

  34. R.K. Jain, J. Control Release 53, 49 (1998). doi:10.1016/S0168-3659(97)00237-X

    Article  PubMed  CAS  Google Scholar 

  35. R. Wang, B. Xia, B.J. Li, S.L. Peng, L.S. Ding, S. Zhang Int. J. Pharm. (Aug):3. Epub ahead of print (2008)

Download references

Acknowledgments

Work supported by the National Research and Development Agency of Romania, the Program of Excellence in Research (No. 129/2006-CEEX). Kindly thanks to Dr. Cristian Panaiotu (Bucharest University) for magnetic susceptibility studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenia Teodor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teodor, E., Litescu, SC., Lazar, V. et al. Hydrogel-magnetic nanoparticles with immobilized l-asparaginase for biomedical applications. J Mater Sci: Mater Med 20, 1307–1314 (2009). https://doi.org/10.1007/s10856-008-3684-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3684-y

Keywords

Navigation