Skip to main content
Log in

Multivariate Optimization and Supplementation Strategies for the Simultaneous Production of Amylases, Cellulases, Xylanases, and Proteases by Aspergillus awamori Under Solid-State Fermentation Conditions

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The production of extracts containing a pool of enzymes for extensive biomass deconstruction can lead to significant advantages in biorefinery applications. In this work, a strain of Aspergillus awamori IOC-3914 was used for the simultaneous production of five groups of hydrolases by solid-state fermentation of babassu cake. Sequential experimental design strategies and multivariate optimization using the desirability function were first used to study temperature, moisture content, and granulometry. After that, further improvements in product yields were achieved by supplementation with other agro-industrial materials. At the end of the study, the production of enzymes was up to 3.3-fold increased, and brewer’s spent grains and babassu flour showed to be the best supplements. Maximum activities for endoamylases, exoamylases, cellulases (CMCases), xylanases, and proteases achieved were 197, 106, 20, 835, and 57 U g−1, respectively. The strain was also able to produce β-glucosidases and debranching amylases (up to 35 and 43 U g−1, respectively), indicating the potential of its enzyme pool for cellulose and starch degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ragauskas, A. J., Williams, C. K., Davison, B. H., Britovsek, G., Cairney, J., Eckert, C. A., Frederick, W. J., Jr., Hallett, J. P., Leak, D. J., Liotta, C. L., Mielenz, J. R., Murphy, R., Templer, R., & Tschaplinski, T. (2006). Science, 311, 484–489.

    Article  CAS  Google Scholar 

  2. Martín, C., Moure, A., Martín, G., Carrillo, E., Domínguez, H., & Parajó, J. C. (2010). Biomass Bioengineering, 34, 533–538.

    Article  Google Scholar 

  3. Vassilev, S. V., Baxter, D., Andersen, L. K., Vassileva, C. G., & Morgan, T. J. (2012). Fuel, 94, 1–33.

    Article  CAS  Google Scholar 

  4. Viniegra-González, G., Favela-Torres, E., Aguilar, C. N., Roméro-Gomez, S. J., Díaz-Godínez, G., & Augur, C. (2003). Biochemical Engineering Journal, 13, 157–167.

    Article  Google Scholar 

  5. Castilho, L. R., Polato, C. M. S., Baruque, E. A., Sant’Anna, G. L., Jr., & Freire, D. M. G. (2000). Biochemical Engineering Journal, 4, 239–247.

    Article  CAS  Google Scholar 

  6. Hölker, U., & Lenz, J. (2005). Current Opinion in Microbiology, 8, 301–306.

    Article  Google Scholar 

  7. Lopez, J. A., Lázaro, C. C., Castilho, L. R., Freire, D. M. G., & Castro, A. M. (2013). Biochemical Engineering Journal, 77, 231–239.

    Article  CAS  Google Scholar 

  8. Cinelli, B. A., Lopez, J. A., Castilho, L. R., Freire, D. M. G., & Castro, A. M. (2014). Fuel, 124, 41–48.

    Article  CAS  Google Scholar 

  9. Castro, A. M., Teixeira, M. M. P., Carvalho, D. F., Freire, D. M. G., & Castilho, L. R. (2011). Enzyme Research. doi:10.4061/2011/457392.

    Google Scholar 

  10. Pal, A., & Khanum, F. (2010). Bioresource Technology, 101, 7563–7569.

    Article  CAS  Google Scholar 

  11. Young, D. L., Teplik, J., Weed, H. D., Tracht, N. T., & Alvarez, A. R. (1991). IEEE Transactions Computing Aid Design ntegration Circular Systems, 10, 103–115.

    Article  Google Scholar 

  12. Priyanka, P., & Jaya Raju, K. (2013). International Journal of Chemical Sciences, 11, 291–305.

    CAS  Google Scholar 

  13. Jian, X., Shouwen, C., & Ziniu, Y. (2005). Proceedings Biochemistry, 40, 3075–3081.

    Article  Google Scholar 

  14. Kareem, S. O., Akpan, I., & Oduntan, S. B. (2009). African Journal of Microbiology Research, 3, 974–977.

    CAS  Google Scholar 

  15. Castro, A.M. (2010) PhD thesis. Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.

  16. Castro, A. M., Carvalho, M. L. A., Leite, S. G. F., & Pereira, N., Jr. (2010). Journal of Industrial Microbiology and Biotechnology, 37, 151–158.

    Article  CAS  Google Scholar 

  17. Garlapati, V. K., Vundavilli, P. R., & Banerjee, R. (2010). Applied Biochemistry and Biotechnology, 162, 1350–1361.

    Article  CAS  Google Scholar 

  18. Paris, L. D., Scheufele, F. B., Teixeira Júnior, A., Guerreiro, T. L., & Hasan, S. D. M. (2012). Acta Science Technology, 34, 193–200.

    Article  Google Scholar 

  19. Balkan, B., Balkan, S., & Ertan, F. (2011). Romanian Biotechnology Letters, 16, 6591–6600.

    CAS  Google Scholar 

  20. Gervais, P., & Molin, P. (2003). Biochemical Engineering Journal, 13, 85–101.

    Article  CAS  Google Scholar 

  21. Castro, A. M., Castilho, L. R., & Freire, D. M. G. (2011). Biomass Conv Bioref, 1, 245–255.

    Article  CAS  Google Scholar 

  22. Moftah, O. A. S., Grbavčić, S., Žuža, M., Luković, N., Bezbradica, D., & Knežević-Jugović, Z. (2012). Applied Biochemistry and Biotechnology, 166, 348–364.

    Article  CAS  Google Scholar 

  23. Walia, A., Mehta, P., Chauhan, A., & Shirkot, C. K. (2013). Annals of Microbiology, 63, 187–198.

    Article  CAS  Google Scholar 

  24. Rodrigues, M. I., & Iemma, A. F. (2005). Planejamento de Experimentos e Otimização de Processos (1st ed.). Campinas: Casa do Pão.

    Google Scholar 

  25. Gutarra, M. L. E., Godoy, M. G., Maugeri, F., Rodrigues, M. I., Freire, D. M. G., & Castilho, L. R. (2009). Bioresource Technology, 100, 5249–5254.

    Article  CAS  Google Scholar 

  26. Gutarra, M. L. E., Godoy, M. G., Castilho, L. R., & Freire, D. M. G. (2007). Journal of Chemical Technology and Biotechnology, 82, 313–318.

    Article  CAS  Google Scholar 

  27. Mussato, S. I., Dragone, G., & Roberto, I. C. (2006). Journal of Cereal Science, 43, 1–14.

    Article  Google Scholar 

  28. Castro, A. M., & Pereira, N., Jr. (2010). Quim Nova, 33, 181–188.

    Article  Google Scholar 

  29. Lopez, J.A., Koutinas, A., Castilho, L.R., Freire, D.M.G., Castro, A.M. (2012) 4th International Conference on Engineering for Waste and Biomass Valorization. Porto, Portugal. 2012.

  30. Mohamed, S. A., Malki, A. L., Khan, J. A., Kabli, S. A., & Al-Garni, S. M. (2013). Journal of Microbiology, 51, 605–611.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Edmond Baruque (Tocantins Babaçu S.A.) for kindly providing babassu cake and Daniele Fernandes and Mariana Teixeira for their technical assistance. The financial support from CNPq, CAPES, FAPERJ, and ANP/PETROBRAS are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aline Machado de Castro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Castro, A.M., Castilho, L.R. & Freire, D.M.G. Multivariate Optimization and Supplementation Strategies for the Simultaneous Production of Amylases, Cellulases, Xylanases, and Proteases by Aspergillus awamori Under Solid-State Fermentation Conditions. Appl Biochem Biotechnol 175, 1588–1602 (2015). https://doi.org/10.1007/s12010-014-1368-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1368-2

Keywords

Navigation