Skip to main content
Log in

Development of Wide-Spectrum Hybrid Bacteriocins for Food Biopreservation

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The food industry demands new procedures and methods to produce minimally processed, ready to eat food with intact nutritional, taste, and flavor properties. The biopreservation and the use of both bacteriocins produced by lactic acid bacteria (LAB) and bacteriocinogenic strains as an alternative to substitute chemical antimicrobial for food preservation became increasingly important in the last two decades. When the new proposed natural preservatives techniques are applied, probiotics food can be obtained and, simultaneously, foodborne pathogens and spoilage contaminants can diminish. However, bacteriocins produced by LAB have a narrow antibacterial spectrum and are inactive against Gram-negative bacteria like Salmonella and the emergent enterohemorrhagic Escherichia coli. Knowing the mechanism of action and the structural features of microcins synthesized by Gram-negative bacteria and with potent antimicrobial activity against the mentioned microorganism, the proposal is to obtain hybrid peptides (microcin–bacteriocin) with broad antimicrobial spectrum. This review explains how the inability of bacteriocins to cross the outer membrane of Gram-negative bacteria unable them to act on the bacteria. It will also be discussed how a hybrid bacteriocin can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abriouel, H., Valdivia, E., Gálvez, A., & Maqueda, M. (1998). Response of Salmonella choleraesuis LT2 spheroplasts and permeabilized cells to the bacteriocin AS-48. Applied and Environmental Microbiology, 64, 4623–4626.

    CAS  Google Scholar 

  • Allende, A., Tomás-Barberán, F. A., & Gil, M. I. (2006). Minimal processing for healthy traditional foods. Trends in Food Science and Technology, 17, 513–519.

    Article  CAS  Google Scholar 

  • Ananou, S., Gálvez, A., Martínez-Bueno, M., Maqueda, M., & Valdivia, E. (2005). Synergistic effect of enterocin AS-48 in combination with outer membrane permeabilizing treatments against Escherichia coli O157:H7. Journal of Applied Microbiology, 99, 1364–1372.

    Article  CAS  Google Scholar 

  • Ananou, S., Maqueda, M., Martínez-Bueno, M., & Valdivia, E. (2007). Biopreservation, an ecological approach to improve the safety and shelf-life of foods. In A. Méndez-Vilas (Ed.), Communicating Current Research and Educational Topics and Trends in Applied Microbiology. Microbiology book series (pp. 475–486). Spain: Formatex.

    Google Scholar 

  • Arlindo, S., Calo, P., Franco, C., Prado, M., Cepeda, A., & Barros-Velázquez, J. (2006). Single nucleotide polymorphism analysis of the enterocin P structural gene of Enterococcus faecium strains isolated from nonfermented animal foods. Molecular Nutrition & Food Research, 50, 1229–1238.

    Article  CAS  Google Scholar 

  • Arnusch, C. J., Bonvin, A. M. J. J., Verel, A. M., Jansen, W. T. M., Liskamp, R. M. J., de Kruijff, B., et al. (2008). The vancomycin-nisin(1-12) hybrid restores activity against vancomycin resistant Enterococci. Biochemistry, 47, 12661–12663.

    Article  CAS  Google Scholar 

  • Asaduzzaman, S. M., & Sonomoto, K. (2009). Lantibiotics: diverse activities and unique modes of action. Journal of Bioscience and Bioengineering, 107, 475–487.

    Article  CAS  Google Scholar 

  • Azpiroz, M. F., & Laviña, M. (2007). Modular structure of microcin H47 and colicin V. Antimicrob. Agents Chemother, 51, 2412–2419.

    Article  CAS  Google Scholar 

  • Barna, J. C., & Williams, D. H. (1984). The structure and mode of action of glycopeptide antibiotics of the vancomycin group. Annual Review of Microbiology, 38, 339–357.

    Article  CAS  Google Scholar 

  • Beaulieu, L., Tolkatchev, D., Jetté, J., Groleau, D., & Subirade, M. (2007). Production of active pediocin PA-1 in Escherichia coli using a thioredoxin gene fusion expression approach: cloning, expression, purification, and characterization. Canadian Journal of Microbiology, 53, 1246–1258.

    Article  CAS  Google Scholar 

  • Bellomio, A., Vincent, P. A., de Arcuri, B. F., Farías, R. N., & Morero, R. D. (2007). Microcin J25 has dual and independent mechanisms of action in Escherichia coli: RNA polymerase inhibition and increased superoxide production. Journal of Bacteriology, 189, 4180–4186.

    Article  CAS  Google Scholar 

  • Bennik, M. H., Vanloo, B., Brasseur, R., Gorris, L. G., & Smid, E. J. (1998). A novel bacteriocin with a YGNGV motif from vegetable-associated Enterococcus mundtii: full characterization and interaction with target organisms. Biochimica et Biophysica Acta, 1373, 47–58.

    Article  CAS  Google Scholar 

  • Bhugaloo-Vial, P., Douliez, J. P., Moll, D., Dousset, X., Boyaval, P., & Marion, D. (1999). Delineation of key amino acid side chains and peptide domains for antimicrobial properties of divercin V41, a pediocin-like bacteriocin secreted by Carnobacterium divergens V41. Applied and Environmental Microbiology, 65, 2895–2900.

    CAS  Google Scholar 

  • Bhunia, A. K., Johnson, M. C., Ray, B., & y Belden, E. L. (1990). Antigenic property of pediocin AcH produced by Pediococcus acidilactici H. The Journal of Applied Bacteriology, 69, 211–215.

    CAS  Google Scholar 

  • Bieler, S., Silva, F., Soto, C., & Belin, D. (2006). Bactericidal activity of both secreted and nonsecreted microcin E492 requires the mannose permease. Journal of Bacteriology, 188, 7049–7061.

    Article  CAS  Google Scholar 

  • Bierbaum, G., & Sahl, H. (2009). Lantibiotics: mode of action, biosynthesis and bioengineering. Current Pharmaceutical Biotechnology, 10, 2–18.

    Article  CAS  Google Scholar 

  • Boman, H. G., Wade, D., Boman, I. A., Wåhlin, B., & Merrifield, R. B. (1989). Antibacterial and antimalarial properties of peptides that are cecropin-melittin hybrids. FEBS Letters, 259, 103–106.

    Article  CAS  Google Scholar 

  • Bower, C. K., & Daeschel, M. A. (1999). Resistance responses of microorganisms in food environments. International Journal of Food Microbiology, 50, 33–44.

    Article  CAS  Google Scholar 

  • Boziaris, I. S., & Adams, M. R. (1999). Effect of chelators and nisin produced in situ on inhibition and inactivation of Gram negatives. International Journal of Food Microbiology, 53, 105–113.

    Article  CAS  Google Scholar 

  • Boziaris, I. S., & Adams, M. R. (2000). Transient sensitivity to nisin in cold-shocked Gram negatives. Letters in Applied Microbiology, 31, 233–237.

    Article  CAS  Google Scholar 

  • Breukink, E., Wiedemann, I., van Kraaij, C., Kuipers, O. P., Sahl, H., & de Kruijff, B. (1999). Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science, 286, 2361–2364.

    Article  CAS  Google Scholar 

  • Breukink, E., van Heusden, H. E., Vollmerhaus, P. J., Swiezewska, E., Brunner, L., Walker, S., et al. (2003). Lipid II is an intrinsic component of the pore induced by nisin in bacterial membranes. The Journal of Biological Chemistry, 278, 19898–19903.

    Article  CAS  Google Scholar 

  • Brogden, K. A. (2005). Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature Reviews Microbiology, 3, 238–250.

    Article  CAS  Google Scholar 

  • Calderón-Miranda, M. L., Barbosa-Cánovas, G. V., & Swanson, B. G. (1999). Inactivation of Listeria innocua in liquid whole egg by pulsed electric fields and nisin. International Journal of Food Microbiology, 51, 7–17.

    Article  Google Scholar 

  • Calo-Mata, P., Arlindo, S., Boehme, K., de Miguel, T., Pascoal, A., & Barros-Velazquez, J. (2008). Current applications and future trends of lactic acid bacteria and their bacteriocins for the biopreservation of aquatic food products. Food and Bioprocess Technology, 1, 43–63.

    Article  Google Scholar 

  • Caplice, E., & Fitzgerald, G. F. (1999). Food fermentations: role of microorganisms in food production and preservation. International Journal of Food Microbiology, 50, 131–149.

    Article  CAS  Google Scholar 

  • Capozzi, V., Fiocco, D., Amodio, M. L., Gallone, A., & Spano, G. (2009). Bacterial stressors in minimally processed food. International Journal of Molecular Sciences, 10, 3076–3105.

    Article  CAS  Google Scholar 

  • Chakraborty, R., Storey, E., & van der Helm, D. (2007). Molecular mechanism of ferricsiderophore passage through the outer membrane receptor proteins of Escherichia coli. Biometals, 20, 263–274.

    Article  CAS  Google Scholar 

  • Chehade, H., & Braun, V. (1988). Iron-regulated synthesis and uptake of colicin V. FEMS Microbiology Letters, 52, 177–181.

    Article  CAS  Google Scholar 

  • Chen, C. M., Sebranek, J. G., Dickson, J. S., & Mendonca, A. F. (2004). Combining pediocin with postpackaging irradiation for control of Listeria monocytogenes on frankfurters. Journal of Food Protection, 67, 1866–1875.

    CAS  Google Scholar 

  • Cintas, L. M., Casaus, P., Håvarstein, L. S., Hernández, P. E., & y Nes, I. F. (1997). Biochemical and genetic characterization of enterocin P, a novel sec-dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum. Applied and Environmental Microbiology, 63, 4321–4330.

    CAS  Google Scholar 

  • Cooksey, K. (2005). Effectiveness of antimicrobial food packaging materials. Food Additives and Contaminants, 22, 980–987.

    Article  CAS  Google Scholar 

  • Cotter, P. D., Hill, C., & Ross, R. P. (2005). Bacteriocins: developing innate immunity for food. Nature Reviews Microbiology, 3, 777–788.

    Article  CAS  Google Scholar 

  • Crameri, A., Raillard, S. A., Bermudez, E., & Stemmer, W. P. (1998). DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature, 391, 288–291.

    Article  CAS  Google Scholar 

  • Dalet, K., Cenatiempo, Y., Cossart, P., & Héchard, Y. (2001). A sigma(54)-dependent PTS permease of the mannose family is responsible for sensitivity of Listeria monocytogenes to mesentericin Y105. Microbiology (Reading, Engl.), 147, 3263–3269.

    CAS  Google Scholar 

  • de Lorenzo, V., & Pugsley, A. P. (1985). Microcin E492, a low-molecular-weight peptide antibiotic which causes depolarization of the Escherichia coli cytoplasmic membrane. Antimicrobial Agents and Chemotherapy, 27, 666–669.

    Google Scholar 

  • de Pablo, M. A., Gaforio, J. J., Gallego, A. M., Ortega, E., Gálvez, A. M., & y Alvarez de Cienfuegos López, G. (1999). Evaluation of immunomodulatory effects of nisin-containing diets on mice. FEMS Immunology and Medical Microbiology, 24, 35–42.

    Google Scholar 

  • Delcour, A. H. (2009). Outer membrane permeability and antibiotic resistance. Biochimica et Biophysica Acta, 1794, 808–816.

    CAS  Google Scholar 

  • Delgado, M. A., Rintoul, M. R., Farías, R. N., & Salomón, R. A. (2001). Escherichia coli RNA polymerase is the target of the cyclopeptide antibiotic microcin J25. Journal of Bacteriology, 183, 4543–4550.

    Article  CAS  Google Scholar 

  • Destoumieux-Garzón, D., Peduzzi, J., & Rebuffat, S. (2002). Focus on modified microcins: structural features and mechanisms of action. Biochimie, 84, 511–519.

    Article  Google Scholar 

  • Destoumieux-Garzón, D., Thomas, X., Santamaria, M., Goulard, C., Barthélémy, M., Boscher, B., et al. (2003). Microcin E492 antibacterial activity: evidence for a TonB-dependent inner membrane permeabilization on Escherichia coli. Molecular Microbiology, 49, 1031–1041.

    Article  CAS  Google Scholar 

  • Destoumieux-Garzón, D., Duquesne, S., Peduzzi, J., Goulard, C., Desmadril, M., Letellier, L., et al. (2005). The iron-siderophore transporter FhuA is the receptor for the antimicrobial peptide microcin J25: role of the microcin Val11-Pro16 beta-hairpin region in the recognition mechanism. The Biochemical Journal, 389, 869–876.

    Article  Google Scholar 

  • Destoumieux-Garzón, D., Peduzzi, J., Thomas, X., Djediat, C., & Rebuffat, S. (2006). Parasitism of iron-siderophore receptors of Escherichia coli by the siderophore-peptide microcin E492m and its unmodified counterpart. Biometals, 19, 181–191.

    Article  CAS  Google Scholar 

  • Diep, D. B., Skaugen, M., Salehian, Z., Holo, H., & Nes, I. F. (2007). Common mechanisms of target cell recognition and immunity for class II bacteriocins. Proceedings of the National Academy of Sciences of the United States of America, 104, 2384–2389.

    Article  CAS  Google Scholar 

  • Drider, D., Fimland, G., Héchard, Y., McMullen, L. M., & Prévost, H. (2006). The continuing story of class IIa bacteriocins. Microbiology and Molecular Biology Reviews, 70, 564–582.

    Article  CAS  Google Scholar 

  • Duquesne, S., Destoumieux-Garzón, D., Peduzzi, J., & Rebuffat, S. (2007). Microcins, gene-encoded antibacterial peptides from enterobacteria. Natural Product Reports, 24, 708–734.

    Article  CAS  Google Scholar 

  • D'Urso, O. F., Poltronieri, P., Marsigliante, S., Storelli, C., Hernández, M., & Rodríguez-Lázaro, D. (2009). A filtration-based real-time PCR method for the quantitative detection of viable Salmonella enterica and Listeria monocytogenes in food samples. Food Microbiology, 26, 311–316.

    Article  CAS  Google Scholar 

  • Eijsink, V. G., Skeie, M., Middelhoven, P. H., Brurberg, M. B., & Nes, I. F. (1998). Comparative studies of class IIa bacteriocins of lactic acid bacteria. Applied and Environmental Microbiology, 64, 3275–3281.

    CAS  Google Scholar 

  • Eijsink, V. G. H., Axelsson, L., Diep, D. B., Håvarstein, L. S., Holo, H., & Nes, I. F. (2002). Production of class II bacteriocins by lactic acid bacteria; an example of biological warfare and communication. Antonie van Leeuwenhoek, 81, 639–654.

    Article  CAS  Google Scholar 

  • Ennahar, S., Sonomoto, K., & Ishizaki, A. (1999). Class IIa bacteriocins from lactic acid bacteria: antibacterial activity and food preservation. Journal of Bioscience and Bioengineering, 87, 705–716.

    Article  CAS  Google Scholar 

  • Erickson, M. C., & Doyle, M. P. (2007). Food as a vehicle for transmission of Shiga toxin-producing Escherichia coli. Journal of Food Protection, 70, 2426–2449.

    CAS  Google Scholar 

  • Field, D., Connor, P. M. O., Cotter, P. D., Hill, C., & Ross, R. P. (2008). The generation of nisin variants with enhanced activity against specific Gram-positive pathogens. Molecular Microbiology, 69, 218–230.

    Article  CAS  Google Scholar 

  • Fimland, G., Blingsmo, O. R., Sletten, K., Jung, G., Nes, I. F., & Nissen-Meyer, J. (1996). New biologically active hybrid bacteriocins constructed by combining regions from various pediocin-like bacteriocins: the C-terminal region is important for determining specificity. Applied and Environmental Microbiology, 62, 3313–3318.

    CAS  Google Scholar 

  • Fimland, G., Jack, R., Jung, G., Nes, I. F., & Nissen-Meyer, J. (1998). The bactericidal activity of pediocin PA-1 is specifically inhibited by a 15-mer fragment that spans the bacteriocin from the center toward the C terminus. Applied and Environmental Microbiology, 64, 5057–5060.

    CAS  Google Scholar 

  • Fimland, G., Johnsen, L., Axelsson, L., Brurberg, M. B., Nes, I. F., Eijsink, V. G., et al. (2000). A C-terminal disulfide bridge in pediocin-like bacteriocins renders bacteriocin activity less temperature dependent and is a major determinant of the antimicrobial spectrum. Journal of Bacteriology, 182, 2643–2648.

    Article  CAS  Google Scholar 

  • Fimland, G., Johnsen, L., Dalhus, B., & Nissen-Meyer, J. (2005). Pediocin-like antimicrobial peptides (class IIa bacteriocins) and their immunity proteins: biosynthesis, structure, and mode of action. Journal of Peptide Science, 11, 688–696.

    Article  CAS  Google Scholar 

  • Fink, J., Boman, A., Boman, H. G., & Merrifield, R. B. (1989). Design, synthesis and antibacterial activity of cecropin-like model peptides. Int. J. Pept. Protein Res, 33, 412–421.

    Article  CAS  Google Scholar 

  • Fink, J., Merrifield, R. B., Boman, A., & Boman, H. G. (1989). The chemical synthesis of cecropin D and an analog with enhanced antibacterial activity. J. Biol. Chem, 264, 6260–6267.

    CAS  Google Scholar 

  • Franklin, N. B., Cooksey, K. D., & Getty, K. J. K. (2004). Inhibition of Listeria monocytogenes on the surface of individually packaged hot dogs with a packaging film coating containing nisin. Journal of Food Protection, 67, 480–485.

    CAS  Google Scholar 

  • Fregeau Gallagher, N. L., Sailer, M., Niemczura, W. P., Nakashima, T. T., Stiles, M. E., & Vederas, J. C. (1997). Three-dimensional structure of leucocin A in trifluoroethanol and dodecylphosphocholine micelles: spatial location of residues critical for biological activity in type IIa bacteriocins from lactic acid bacteria. Biochemistry, 36, 15062–15072.

    Article  CAS  Google Scholar 

  • Gálvez, A., Maqueda, M., Valdivia, E., Quesada, A., & Montoya, E. (1986). Characterization and partial purification of a broad spectrum antibiotic AS-48 produced by Streptococcus faecalis. Canadian Journal of Microbiology, 32, 765–771.

    Article  Google Scholar 

  • Gálvez, A., Abriouel, H., López, R. L., & Ben Omar, N. (2007). Bacteriocin-based strategies for food biopreservation. International Journal of Food Microbiology, 120, 51–70.

    Article  CAS  Google Scholar 

  • Galvez, A., Lopez, R. L., Abriouel, H., Valdivia, E., & Omar, N. B. (2008). Application of bacteriocins in the control of foodborne pathogenic and spoilage bacteria. Critical Reviews in Biotechnology, 28, 125–152.

    Article  CAS  Google Scholar 

  • Gérard, F., Pradel, N., Ye, C., Ize, B., Yi, L., Xu, J., et al. (2004). Putative membrane assembly of EtpM-colicin V chimeras. Biochimie, 86, 283–286.

    Article  CAS  Google Scholar 

  • Gérard, F., Pradel, N., & Wu, L. (2005). Bactericidal activity of colicin V is mediated by an inner membrane protein, SdaC, of Escherichia coli. Journal of Bacteriology, 187, 1945–1950.

    Article  CAS  Google Scholar 

  • Gilson, L., Mahanty, H. K., & Kolter, R. (1987). Four plasmid genes are required for colicin V synthesis, export, and immunity. Journal of Bacteriology, 169, 2466–2470.

    CAS  Google Scholar 

  • Gilson, L., Mahanty, H. K., & Kolter, R. (1990). Genetic analysis of an MDR-like export system: the secretion of colicin V. The EMBO Journal, 9, 3875–3884.

    CAS  Google Scholar 

  • Gould, G. W. (2000). Induced tolerance of microorganisms to stress factors. In Minimally processed fruits and vegetables, S. M. Alzamora, M. S. Tapia, and A. López-Malo, eds. (Springer), págs. 29–42.

  • Gratia, A. (1925). Sur un remarquable example d'antagonisme entre deux souches de colibacille. Compt Rend Soc Biol, 93, 1040–2.

    Google Scholar 

  • Gravesen, A., Ramnath, M., Rechinger, K. B., Andersen, N., Jänsch, L., Héchard, Y., et al. (2002). High-level resistance to class IIa bacteriocins is associated with one general mechanism in Listeria monocytogenes. Microbiology (Reading, Engl.), 148, 2361–2369.

    CAS  Google Scholar 

  • Gross, E., & Morell, J. L. (1971). The structure of nisin. Journal of the American Chemical Society, 93, 4634–4635.

    Article  CAS  Google Scholar 

  • Guaní-Guerra, E., Santos-Mendoza, T., Lugo-Reyes, S. O., & Terán, L. M. (2010). Antimicrobial peptides: general overview and clinical implications in human health and disease. Clinical Immunology, 135, 1–11.

    Article  CAS  Google Scholar 

  • Gutiérrez, J., Criado, R., Citti, R., Martín, M., Herranz, C., Fernández, M. F., et al. (2004). Performance and applications of polyclonal antipeptide antibodies specific for the enterococcal bacteriocin enterocin P. Journal of Agricultural and Food Chemistry, 52, 2247–2255.

    Article  CAS  Google Scholar 

  • Hamilton-Miller, J. M. (1994). Dual-action antibiotic hybrids. The Journal of Antimicrobial Chemotherapy, 33, 197–200.

    Article  CAS  Google Scholar 

  • Hantke, K. (1990). Dihydroxybenzoylserine a siderophore for E. coli. FEMS Microbiology Letters, 55, 5–8.

    CAS  Google Scholar 

  • Harrison, M. A., & Davidson, P. M. (2000). Resistance and Adaptation to Food Antimicrobials, Sanitizers, and Other Process Controls. Available at: http://dialnet.unirioja.es/servlet/articulo?codigo=682469 [Accedido Mayo 12, 2010].

  • Hasper, H. E., Kramer, N. E., Smith, J. L., Hillman, J. D., Zachariah, C., Kuipers, O. P., et al. (2006). An alternative bactericidal mechanism of action for lantibiotic peptides that target lipid II. Science, 313, 1636–1637.

    Article  CAS  Google Scholar 

  • Haugen, H. S., Fimland, G., Nissen-Meyer, J., & Kristiansen, P. E. (2005). Three-dimensional structure in lipid micelles of the pediocin-like antimicrobial peptide curvacin A. Biochemistry, 44, 16149–16157.

    Article  CAS  Google Scholar 

  • Håvarstein, L. S., Holo, H., & Nes, I. F. (1994). The leader peptide of colicin V shares consensus sequences with leader peptides that are common among peptide bacteriocins produced by Gram-positive bacteria. Microbiology (Reading, Engl.), 140(Pt 9), 2383–2389.

    Article  Google Scholar 

  • Håvarstein, L. S., Diep, D. B., & Nes, I. F. (1995). A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export. Molecular Microbiology, 16, 229–240.

    Article  Google Scholar 

  • Héchard, Y., Pelletier, C., Cenatiempo, Y., & Frère, J. (2001). Analysis of sigma(54)-dependent genes in Enterococcus faecalis: a mannose PTS permease (EII(Man)) is involved in sensitivity to a bacteriocin, mesentericin Y105. Microbiology (Reading, Engl.), 147, 1575–1580.

    Google Scholar 

  • Helander, I. M., & Mattila-Sandholm, T. (2000). Permeability barrier of the Gram-negative bacterial outer membrane with special reference to nisin. International Journal of Food Microbiology, 60, 153–161.

    Article  CAS  Google Scholar 

  • Heng, N. C. K., Wescombe, P. A., Burton, J. P., Jack, R. W., & Tagg. (2007). The diversity of bacteriocins in Gram-positive bacteria. In M. A. Riley & M. A. Chavan (Eds.), Bacteriocins: ecology and evolution (pp. 45–92). Berlin: Springer.

    Chapter  Google Scholar 

  • Herranz, C., & y Driessen, A. J. M. (2005). Sec-mediated secretion of bacteriocin enterocin P by Lactococcus lactis. Applied and Environmental Microbiology, 71, 1959–1963.

    Article  CAS  Google Scholar 

  • Hetz, C., Bono, M. R., Barros, L. F., & y Lagos, R. (2002). Microcin E492, a channel-forming bacteriocin from Klebsiella pneumoniae, induces apoptosis in some human cell lines. Proceedings of the National Academy of Sciences of the United States of America, 99, 2696–2701.

    Article  CAS  Google Scholar 

  • Holak, T. A., Engström, A., Kraulis, P. J., Lindeberg, G., Bennich, H., Jones, T. A., et al. (1988). The solution conformation of the antibacterial peptide cecropin A: a nuclear magnetic resonance and dynamical simulated annealing study. Biochemistry, 27, 7620–7629.

    Article  CAS  Google Scholar 

  • Horn, N., Martínez, M. I., Martínez, J. M., Hernández, P. E., Gasson, M. J., Rodríguez, J. M., et al. (1999). Enhanced production of pediocin PA-1 and coproduction of nisin and pediocin PA-1 by Lactococcus lactis. Applied and Environmental Microbiology, 65, 4443–4450.

    CAS  Google Scholar 

  • Horn, N., Fernández, A., Dodd, H. M., Gasson, M. J., & Rodríguez, J. M. (2004). Nisin-controlled production of pediocin PA-1 and colicin V in nisin- and non-nisin-producing Lactococcus lactis strains. Applied and Environmental Microbiology, 70, 5030–5032.

    Article  CAS  Google Scholar 

  • Hosseini, S. V., Arlindo, S., Böhme, K., Fernández-No, C., Calo-Mata, P., & Barros-Velázquez, J. (2009). Molecular and probiotic characterization of bacteriocin-producing Enterococcus faecium strains isolated from nonfermented animal foods. Journal of Applied Microbiology, 107, 1392–1403.

    Article  CAS  Google Scholar 

  • Ingham, A. B., Sproat, K. W., Tizard, M. L. V., & Moore, R. J. (2005). A versatile system for the expression of nonmodified bacteriocins in Escherichia coli. Journal of Applied Microbiology, 98, 676–683.

    Article  CAS  Google Scholar 

  • Ize, B., Gérard, F., Zhang, M., Chanal, A., Voulhoux, R., Palmer, T., et al. (2002). In vivo dissection of the Tat translocation pathway in Escherichia coli. Journal of Molecular Biology, 317, 327–335.

    Article  CAS  Google Scholar 

  • Jack, R. W., & Jung, G. (2000). Lantibiotics and microcins: polypeptides with unusual chemical diversity. Current Opinion in Chemical Biology, 4, 310–317.

    Article  CAS  Google Scholar 

  • Jasniewski, J., Cailliez-Grimal, C., Gelhaye, E., & Revol-Junelles, A. (2008). Optimization of the production and purification processes of carnobacteriocins Cbn BM1 and Cbn B2 from Carnobacterium maltaromaticum CP5 by heterologous expression in Escherichia coli. Journal of Microbiological Methods, 73, 41–48.

    Article  CAS  Google Scholar 

  • Jin, T., Liu, L., Sommers, C. H., Boyd, G., & Zhang, H. (2009). Radiation sensitization and postirradiation proliferation of Listeria monocytogenes on ready-to-eat deli meat in the presence of pectin-nisin films. Journal of Food Protection, 72, 644–649.

    Google Scholar 

  • Johnsen, L., Fimland, G., & Nissen-Meyer, J. (2005). The C-terminal domain of pediocin-like antimicrobial peptides (class IIa bacteriocins) is involved in specific recognition of the C-terminal part of cognate immunity proteins and in determining the antimicrobial spectrum. The Journal of Biological Chemistry, 280, 9243–9250.

    Article  CAS  Google Scholar 

  • Kaur, K., Andrew, L. C., Wishart, D. S., & Vederas, J. C. (2004). Dynamic relationships among type IIa bacteriocins: temperature effects on antimicrobial activity and on structure of the C-terminal amphipathic alpha helix as a receptor-binding region. Biochemistry, 43, 9009–9020.

    Article  CAS  Google Scholar 

  • Kim, S., Ruengwilysup, C., & Fung, D. Y. C. (2004). Antibacterial effect of water-soluble tea extracts on foodborne pathogens in laboratory medium and in a food model. Journal of Food Protection, 67, 2608–2612.

    CAS  Google Scholar 

  • Kjos, M., Nes, I. F., & Diep, D. B. (2009). Class II one-peptide bacteriocins target a phylogenetically defined subgroup of mannose phosphotransferase systems on sensitive cells. Microbiology (Reading, Engl.), 155, 2949–2961.

    Article  CAS  Google Scholar 

  • Klocke, M., Mundt, K., Idler, F., Jung, S., & Backhausen, J. E. (2005). Heterologous expression of enterocin A, a bacteriocin from Enterococcus faecium, fused to a cellulose-binding domain in Escherichia coli results in a functional protein with inhibitory activity against Listeria. Applied Microbiology and Biotechnology, 67, 532–538.

    Article  CAS  Google Scholar 

  • Lagos, R., Wilkens, M., Vergara, C., Cecchi, X., & Monasterio, O. (1993). Microcin E492 forms ion channels in phospholipid bilayer membrane. FEBS Letters, 321, 145–148.

    Article  CAS  Google Scholar 

  • Lagos, R., Tello, M., Mercado, G., García, V., & y Monasterio, O. (2009). Antibacterial and antitumorigenic properties of microcin E492, a pore-forming bacteriocin. Current Pharmaceutical Biotechnology, 10, 74–85.

    Article  CAS  Google Scholar 

  • Larsen, R. A., Letain, T. E., & Postle, K. (2003). In vivo evidence of TonB shuttling between the cytoplasmic and outer membrane in Escherichia coli. Molecular Microbiology, 49, 211–218.

    Article  CAS  Google Scholar 

  • Leistner, L. (1978). Hurdle effect and energy saving. In W. K. Downey (Ed.), Food Quality and Nutrition (pp. 553–557). London: Applied Science Publishers.

    Google Scholar 

  • Leistner, L. (2000). Basic aspects of food preservation by hurdle technology. International Journal of Food Microbiology, 55, 181–186.

    Article  CAS  Google Scholar 

  • Leistner, L., and Grahame, W. (2005). Update on hurdle technology approaches to food preservation. In Antimicrobials in Food, Third Edition, P. M. Davidson, J. N. Sofos, and A. L. Branen, eds. (CRC Press), págs. 621–641.

  • Leyer, G. J., & Johnson, E. A. (1992). Acid adaptation promotes survival of Salmonella spp. in cheese. Applied and Environmental Microbiology, 58, 2075–2080.

    CAS  Google Scholar 

  • Leyer, G. J., & Johnson, E. A. (1993). Acid adaptation induces cross-protection against environmental stresses in Salmonella typhimurium. Applied and Environmental Microbiology, 59, 1842–1847.

    CAS  Google Scholar 

  • Leyer, G. J., Wang, L. L., & Johnson, E. A. (1995). Acid adaptation of Escherichia coli O157:H7 increases survival in acidic foods. Applied and Environmental Microbiology, 61, 3752–3755.

    CAS  Google Scholar 

  • Li, B., Yu, J. P. J., Brunzelle, J. S., Moll, G. N., van der Donk, W. A., & Nair, S. K. (2006). Structure and mechanism of the lantibiotic cyclase involved in nisin biosynthesis. Science, 311, 1464–1467.

    Article  CAS  Google Scholar 

  • Lianou, A., & Sofos, J. N. (2007). A review of the incidence and transmission of Listeria monocytogenes in ready-to-eat products in retail and food service environments. Journal of Food Protection, 70, 2172–2198.

    Google Scholar 

  • Liu, G., Griffiths, M. W., Shang, N., Chen, S., & Li, P. (2010). Applicability of bacteriocinogenic Lactobacillus pentosus 31-1 as a novel functional starter culture or coculture for fermented sausage manufacture. Journal of Food Protection, 73, 292–298.

    Google Scholar 

  • Lou, Y., & Yousef, A. E. (1997). Adaptation to sublethal environmental stresses protects Listeria monocytogenes against lethal preservation factors. Applied and Environmental Microbiology, 63, 1252–1255.

    CAS  Google Scholar 

  • Lubelski, J., Rink, R., Khusainov, R., Moll, G. N., & Kuipers, O. P. (2008). Biosynthesis, immunity, regulation, mode of action and engineering of the model lantibiotic nisin. Cellular and Molecular Life Sciences, 65, 455–476.

    Article  CAS  Google Scholar 

  • Maftah, A., Renault, D., Vignoles, C., Héchard, Y., Bressollier, P., Ratinaud, M. H., et al. (1993). Membrane permeabilization of Listeria monocytogenes and mitochondria by the bacteriocin mesentericin Y105. Journal of Bacteriology, 175, 3232–3235.

    CAS  Google Scholar 

  • Mahapatra, A. K., Muthukumarappan, K., & Julson, J. L. (2005). Applications of ozone, bacteriocins and irradiation in food processing: a review. Critical Reviews in Food Science and Nutrition, 45, 447–461.

    Article  CAS  Google Scholar 

  • Mammen, M., Choi, S., & Whitesides, G. M. (1998). Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angewandte Chemie International Edition, 37, 2754–2794.

    Article  Google Scholar 

  • Maqueda, M., Gálvez, A., Bueno, M. M., Sanchez-Barrena, M. J., González, C., Albert, A., et al. (2004). Peptide AS-48: prototype of a new class of cyclic bacteriocins. Current Protein & Peptide Science, 5, 399–416.

    Article  CAS  Google Scholar 

  • Maqueda, M., Sánchez-Hidalgo, M., Fernández, M., Montalbán-López, M., Valdivia, E., & Martínez-Bueno, M. (2008). Genetic features of circular bacteriocins produced by Gram-positive bacteria. FEMS Microbiology Reviews, 32, 2–22.

    Article  CAS  Google Scholar 

  • Martín, M., Gutiérrez, J., Criado, R., Herranz, C., Cintas, L. M., & y Hernández, P. E. (2007a). Chimeras of mature pediocin PA-1 fused to the signal peptide of enterocin P permits the cloning, production, and expression of pediocin PA-1 in Lactococcus lactis. Journal of Food Protection, 70, 2792–2798.

    Google Scholar 

  • Martín, M., Gutiérrez, J., Criado, R., Herranz, C., Cintas, L. M., & y Hernández, P. E. (2007b). Cloning, production and expression of the bacteriocin enterocin A produced by Enterococcus faecium PLBC21 in Lactococcus lactis. Applied Microbiology and Biotechnology, 76, 667–675.

    Article  CAS  Google Scholar 

  • Martínez, J. M., Martínez, M. I., Suárez, A. M., Herranz, C., Casaus, P., Cintas, L. M., et al. (1998). Generation of polyclonal antibodies of predetermined specificity against pediocin PA-1. Applied and Environmental Microbiology, 64, 4536–4545.

    Google Scholar 

  • Martínez, J. M., Kok, J., Sanders, J. W., & Hernández, P. E. (2000). Heterologous coproduction of enterocin A and pediocin PA-1 by Lactococcus lactis: detection by specific peptide-directed antibodies. Applied and Environmental Microbiology, 66, 3543–3549.

    Article  Google Scholar 

  • McCormick, J. K., Klaenhammer, T. R., & Stiles, M. E. (1999). Colicin V can be produced by lactic acid bacteria. Letters in Applied Microbiology, 29, 37–41.

    Article  CAS  Google Scholar 

  • Merrifield, E. L., Mitchell, S. A., Ubach, J., Boman, H. G., Andreu, D., & Merrifield, R. B. (1995). D-enantiomers of 15-residue cecropin A-melittin hybrids. International Journal of Peptide and Protein Research, 46, 214–220.

    Article  CAS  Google Scholar 

  • Merrifield, R. B., Juvvadi, P., Andreu, D., Ubach, J., Boman, A., & Boman, H. G. (1995). Retro and retroenantio analogs of cecropin-melittin hybrids. Proceedings of the National Academy of Sciences of the United States of America, 92, 3449–3453.

    Article  CAS  Google Scholar 

  • Metaxopoulos, J., Mataragas, M., & Drosinos, E. H. (2002). Microbial interaction in cooked cured meat products under vacuum or modified atmosphere at 4 degrees C. Journal of Applied Microbiology, 93, 363–373.

    Article  CAS  Google Scholar 

  • Metlitskaya, A., Kazakov, T., Kommer, A., Pavlova, O., Praetorius-Ibba, M., Ibba, M., et al. (2006). Aspartyl-tRNA synthetase is the target of peptide nucleotide antibiotic Microcin C. The Journal of Biological Chemistry, 281, 18033–18042.

    Article  CAS  Google Scholar 

  • Miller, K. W., Schamber, R., Chen, Y., & Ray, B. (1998). Production of active chimeric pediocin AcH in Escherichia coli in the absence of processing and secretion genes from the Pediococcus pap operon. Applied and Environmental Microbiology, 64, 14–20.

    CAS  Google Scholar 

  • Moon, G., Pyun, Y., & Kim, W. J. (2006). Expression and purification of a fusion-typed pediocin PA-1 in Escherichia coli and recovery of biologically active pediocin PA-1. International Journal of Food Microbiology, 108, 136–140.

    Article  CAS  Google Scholar 

  • Natale, P., Brüser, T., & y Driessen, A. J. M. (2008). Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane—distinct translocases and mechanisms. Biochimica et Biophysica Acta, 1778, 1735–1756.

    Article  CAS  Google Scholar 

  • Natrajan, N., & Sheldon, B. W. (2000). Efficacy of nisin-coated polymer films to inactivate Salmonella Typhimurium on fresh broiler skin. Journal of Food Protection, 63, 1189–1196.

    CAS  Google Scholar 

  • Nes, I. F., & Holo, H. (2000). Class II antimicrobial peptides from lactic acid bacteria. Biopolymers, 55, 50–61.

    Article  CAS  Google Scholar 

  • Nguyen, V. T., Gidley, M. J., & Dykes, G. A. (2008). Potential of a nisin-containing bacterial cellulose film to inhibit Listeria monocytogenes on processed meats. Food Microbiology, 25, 471–478.

    Article  CAS  Google Scholar 

  • Nieto Lozano, J. C., Meyer, J. N., Sletten, K., Peláz, C., & Nes, I. F. (1992). Purification and amino acid sequence of a bacteriocin produced by Pediococcus acidilactici. Journal of General Microbiology, 138, 1985–1990.

    CAS  Google Scholar 

  • Nikaido, H. (2003). Molecular basis of bacterial outer membrane permeability revisited. Microbiology and Molecular Biology Reviews, 67, 593–656.

    Article  CAS  Google Scholar 

  • Niklison Chirou, M., Bellomio, A., Dupuy, F., Arcuri, B., Minahk, C., & y Morero, R. (2008). Microcin J25 induces the opening of the mitochondrial transition pore and cytochrome c release through superoxide generation. The FEBS Journal, 275, 4088–4096.

    Google Scholar 

  • Niklison-Chirou, M. V., Dupuy, F., Pena, L. B., Gallego, S. M., Barreiro-Arcos, M. L., Avila, C., et al. (2010). Microcin J25 triggers cytochrome c release through irreversible damage of mitochondrial proteins and lipids. The International Journal of Biochemistry & Cell Biology, 42, 273–281.

    Article  CAS  Google Scholar 

  • Nissen-Meyer, J., Holo, H., Håvarstein, L. S., Sletten, K., & Nes, I. F. (1992). A novel lactococcal bacteriocin whose activity depends on the complementary action of two peptides. Journal of Bacteriology, 174, 5686–5692.

    CAS  Google Scholar 

  • Nissen-Meyer, J., Rogne, P., Oppegård, C., Haugen, H. S., & Kristiansen, P. E. (2009). Structure-function relationships of the non-lanthionine-containing peptide (class II) bacteriocins produced by Gram-positive bacteria. Current Pharmaceutical Biotechnology, 10, 19–37.

    Article  CAS  Google Scholar 

  • Nissen-Meyer, J., Oppegård, C., Rogne, P., Haugen, H. S., & Kristiansen, P. E. (2010). Structure and mode-of-action of the two-peptide (Class-IIb) bacteriocins. Probiotics Antimicrob Proteins, 2, 52–60.

    Article  CAS  Google Scholar 

  • Noinaj, N., Guillier, M., Barnard, T. J., & Buchanan, S. K. (2010). TonB-Dependent Transporters: Regulation, Structure, and Function. Annu Rev Microbiol. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20420522 [Accedido Mayo 18, 2010].

  • O'Connor, E. M., & Shand, R. F. (2002). Halocins and sulfolobicins: the emerging story of archaeal protein and peptide antibiotics. Journal of Industrial Microbiology & Biotechnology, 28, 23–31.

    Google Scholar 

  • O'Grady, J., Ruttledge, M., Sedano-Balbás, S., Smith, T. J., Barry, T., & Maher, M. (2009). Rapid detection of Listeria monocytogenes in food using culture enrichment combined with real-time PCR. Food Microbiology, 26, 4–7.

    Article  CAS  Google Scholar 

  • Oh, D., Shin, S. Y., Kang, J. H., Hahm, K. S., Kim, K. L., & Kim, Y. (1999). NMR structural characterization of cecropin A(1-8) - magainin 2(1-12) and cecropin A (1-8) - melittin (1-12) hybrid peptides. The Journal of Peptide Research, 53, 578–589.

    Article  CAS  Google Scholar 

  • Oliver, S. P., Patel, D. A., Callaway, T. R., & Torrence, M. E. (2009). ASAS centennial paper: developments and future outlook for preharvest food safety. Journal of Animal Science, 87, 419–437.

    Article  CAS  Google Scholar 

  • Oppegård, C., Rogne, P., Emanuelsen, L., Kristiansen, P. E., Fimland, G., & Nissen-Meyer, J. (2007). The two-peptide class II bacteriocins: structure, production, and mode of action. Journal of Molecular Microbiology and Biotechnology, 13, 210–219.

    Article  CAS  Google Scholar 

  • Pagès, J., James, C. E., & Winterhalter, M. (2008). The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria. Nature Reviews Microbiology, 6, 893–903.

    Article  CAS  Google Scholar 

  • Palou, E. (1997). Nonthermal Preservation of Foods 1º ed. (CRC Press).

  • Parada, J. L., Caron, C. R., Medeiros, A. B. P., & Soccol, C. R. (2007). Bacteriocins from lactic acid bacteria: purification, properties and use as biopreservatives. Braz. arch. biol. technol. 50. Available at: http://www.scielo.br/scielo.php?pid=S1516-89132007000300018&script=sci_arttext [Accedido Mayo 21, 2010].

  • Parks, W. M., Bottrill, A. R., Pierrat, O. A., Durrant, M. C., & Maxwell, A. (2007). The action of the bacterial toxin, microcin B17, on DNA gyrase. Biochimie, 89, 500–507.

    Article  CAS  Google Scholar 

  • Patzer, S. I., Baquero, M. R., Bravo, D., Moreno, F., & Hantke, K. (2003). The colicin G, H and X determinants encode microcins M and H47, which might utilize the catecholate siderophore receptors FepA, Cir, Fiu and IroN. Microbiology (Reading, Engl.), 149, 2557–2570.

    Article  CAS  Google Scholar 

  • Poey, M. E., Azpiroz, M. F., & Laviña, M. (2006). Comparative analysis of chromosome-encoded microcins. Antimicrobial Agents and Chemotherapy, 50, 1411–1418.

    Article  CAS  Google Scholar 

  • Pomares, M. F., Salomón, R. A., Pavlova, O., Severinov, K., Farías, R., & Vincent, P. A. (2009). Potential applicability of chymotrypsin-susceptible microcin J25 derivatives to food preservation. Applied and Environmental Microbiology, 75, 5734–5738.

    Article  CAS  Google Scholar 

  • Pons, A. M., Lanneluc, I., Cottenceau, G., & Sable, S. (2002). New developments in non-post translationally modified microcins. Biochimie, 84, 531–537.

    Article  CAS  Google Scholar 

  • Postle, K., & Larsen, R. A. (2007). TonB-dependent energy transduction between outer and cytoplasmic membranes. Biometals, 20, 453–465.

    Article  CAS  Google Scholar 

  • Puertollano, M. A., Gaforio, J. J., Gálvez, A., de Pablo, M. A., & y Alvarez de Cienfuegos, G. (2003). Analysis of pro-inflammatory cytokine production in mouse spleen cells in response to the lantibiotic nisin. International Journal of Antimicrobial Agents, 21, 601–603.

    Article  CAS  Google Scholar 

  • Pugsley, A. P. (1993). The complete general secretory pathway in gram-negative bacteria. Microbiological Reviews, 57, 50–108.

    CAS  Google Scholar 

  • Quadri, L. E., Yan, L. Z., Stiles, M. E., & Vederas, J. C. (1997). Effect of amino acid substitutions on the activity of carnobacteriocin B2. Overproduction of the antimicrobial peptide, its engineered variants, and its precursor in Escherichia coli. The Journal of Biological Chemistry, 272, 3384–3388.

    Article  CAS  Google Scholar 

  • Ramnath, M., Beukes, M., Tamura, K., & Hastings, J. W. (2000). Absence of a putative mannose-specific phosphotransferase system enzyme IIAB component in a leucocin A-resistant strain of Listeria monocytogenes, as shown by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Applied and Environmental Microbiology, 66, 3098–3101.

    Article  CAS  Google Scholar 

  • Ramnath, M., Arous, S., Gravesen, A., Hastings, J. W., & Héchard, Y. (2004). Expression of mptC of Listeria monocytogenes induces sensitivity to class IIa bacteriocins in Lactococcus lactis. Microbiology (Reading, Engl.), 150, 2663–2668.

    Article  CAS  Google Scholar 

  • Rasooli, I. (2007). Food preservation—a biopreservative approach. In N. Benkeblia (Ed.), Food (pp. 111–136). United Kingdom: Global Science Books.

    Google Scholar 

  • Ravyts, F., Barbuti, S., Frustoli, M. A., Parolari, G., Saccani, G., De Vuyst, L., et al. (2008). Competitiveness and antibacterial potential of bacteriocin-producing starter cultures in different types of fermented sausages. Journal of Food Protection, 71, 1817–1827.

    Google Scholar 

  • Ray, B., & Bhunia, A. (2007a). Fundamental Food Microbiology, Fourth Edition 4º ed. (CRC Press).

  • Ray, B., & Bhunia, A. (2007b). Important facts in foodborne diseases. In Fundamental Food Microbiology, Fourth Edition (CRC Press), págs. 253-267.

  • Ray, B., Schamber, R., & Miller, K. W. (1999). The pediocin AcH precursor is biologically active. Applied and Environmental Microbiology, 65, 2281–2286.

    CAS  Google Scholar 

  • Richard, C., Drider, D., Fliss, I., Denery, S., & y Prevost, H. (2004). Generation and utilization of polyclonal antibodies to a synthetic C-terminal amino acid fragment of divercin V41, a class IIa bacteriocin. Applied and Environmental Microbiology, 70, 248–254.

    Article  CAS  Google Scholar 

  • Riley, M. A., & Chavan, M. A. (2007). Bacteriocins: ecology and evolution (Springer).

  • Riley, M. A., & Wertz, J. E. (2002). Bacteriocins: evolution, ecology, and application. Annual Review of Microbiology, 56, 117–137.

    Article  CAS  Google Scholar 

  • Rizo, J., & Gierasch, L. M. (1992). Constrained peptides: models of bioactive peptides and protein substructures. Annual Review of Biochemistry, 61, 387–418.

    Article  CAS  Google Scholar 

  • Rodríguez, E., & Laviña, M. (2003). The proton channel is the minimal structure of ATP synthase necessary and sufficient for microcin h47 antibiotic action. Antimicrobial Agents and Chemotherapy, 47, 181–187.

    Article  CAS  Google Scholar 

  • Rodríguez, E., Gaggero, C., & Laviña, M. (1999). The structural gene for microcin H47 encodes a peptide precursor with antibiotic activity. Antimicrobial Agents and Chemotherapy, 43, 2176–2182.

    Google Scholar 

  • Rodríguez, J. M., Martínez, M. I., & Kok, J. (2002). Pediocin PA-1, a wide-spectrum bacteriocin from lactic acid bacteria. Critical Reviews in Food Science and Nutrition, 42, 91–121.

    Article  Google Scholar 

  • Rodríguez, J. M., Martínez, M. I., Horn, N., & y Dodd, H. M. (2003). Heterologous production of bacteriocins by lactic acid bacteria. International Journal of Food Microbiology, 80, 101–116.

    Article  Google Scholar 

  • Rogers, L. A. (1928). The inhibiting effect of Streptococcus lactis on Lactobacillus bulgaricus. Journal of Bacteriology, 16, 321–325.

    CAS  Google Scholar 

  • Saavedra, L., Minahk, C., de Ruiz Holgado, A. P., & Sesma, F. (2004). Enhancement of the enterocin CRL35 activity by a synthetic peptide derived from the NH2-terminal sequence. Antimicrobial Agents and Chemotherapy, 48, 2778–2781.

    Article  CAS  Google Scholar 

  • Salvucci, E., Saavedra, L., & Sesma, F. (2007). Short peptides derived from the NH2-terminus of subclass IIa bacteriocin enterocin CRL35 show antimicrobial activity. The Journal of Antimicrobial Chemotherapy, 59, 1102–1108.

    Article  CAS  Google Scholar 

  • Scialabba, N. E. (2007). Organic agriculture and food security. Italy: Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Severinov, K., Semenova, E., Kazakov, A., Kazakov, T., & Gelfand, M. S. (2007). Low-molecular-weight post-translationally modified microcins. Molecular Microbiology, 65, 1380–1394.

    Article  CAS  Google Scholar 

  • Shafer, W. M. (2006). Antimicrobial Peptides and Human Disease 1º ed. (Springer).

  • Shelburne, C. E., An, F. Y., Dholpe, V., Ramamoorthy, A., Lopatin, D. E., & Lantz, M. S. (2007). The spectrum of antimicrobial activity of the bacteriocin subtilosin A. The Journal of Antimicrobial Chemotherapy, 59, 297–300.

    Article  CAS  Google Scholar 

  • Shin, S. Y., Kang, J. H., Jang, S. Y., Kim, Y., Kim, K. L., & Hahm, K. S. (2000). Effects of the hinge region of cecropin A(1-8)-magainin 2(1-12), a synthetic antimicrobial peptide, on liposomes, bacterial and tumor cells. Biochimica et Biophysica Acta, 1463, 209–218.

    Article  CAS  Google Scholar 

  • Skandamis, P. N., Yoon, Y., Stopforth, J. D., Kendall, P. A., & Sofos, J. N. (2008). Heat and acid tolerance of Listeria monocytogenes after exposure to single and multiple sublethal stresses. Food Microbiology, 25, 294–303.

    Article  CAS  Google Scholar 

  • Smigic, N., Rajkovic, A., Antal, E., Medic, H., Lipnicka, B., Uyttendaele, M., et al. (2009). Treatment of Escherichia coli O157:H7 with lactic acid, neutralized electrolyzed oxidizing water and chlorine dioxide followed by growth under sub-optimal conditions of temperature, pH and modified atmosphere. Food Microbiology, 26, 629–637.

    Article  CAS  Google Scholar 

  • Sobrino-López, A., & Martín-Belloso, O. (2006). Enhancing inactivation of Staphylococcus aureus in skim milk by combining high-intensity pulsed electric fields and nisin. Journal of Food Protection, 69, 345–353.

    Google Scholar 

  • Stevens, K. A., Sheldon, B. W., Klapes, N. A., & Klaenhammer, T. R. (1991). Nisin treatment for inactivation of Salmonella species and other gram-negative bacteria. Applied and Environmental Microbiology, 57, 3613–3615.

    CAS  Google Scholar 

  • Stiles, M. E. (1996). Biopreservation by lactic acid bacteria. Antonie van Leeuwenhoek, 70, 331–345.

    Article  CAS  Google Scholar 

  • Stiles, M., & Hastings, J. (1991). Bacteriocin production by lactic acid bacteria: potential for use in meat preservation. Trends in Food Science and Technology, 2, 247–251.

    Article  CAS  Google Scholar 

  • Suárez, A. M., Rodríguez, J. M., Hernández, P. E., & y Azcona-Olivera, J. I. (1996). Generation of polyclonal antibodies against nisin: immunization strategies and immunoassay development. Applied and Environmental Microbiology, 62, 2117–2121.

    Google Scholar 

  • Tassou, C. C., Drosinos, E. H., & Nychas, G. J. (1995). Effects of essential oil from mint (Mentha piperita) on Salmonella enteritidis and Listeria monocytogenes in model food systems at 4 degrees and 10 degrees C. The Journal of Applied Bacteriology, 78, 593–600.

    CAS  Google Scholar 

  • Tassou, C., Drosinos, E., & Nychas, G. (1996). Inhibition of resident microbial flora and pathogen inocula on cold fresh fish fillets in olive oil, oregano, and lemon juice under modified atmosphere or air. Journal of Food Protection, 59, 31–34.

    Google Scholar 

  • Thomas, X., Destoumieux-Garzón, D., Peduzzi, J., Afonso, C., Blond, A., Birlirakis, N., et al. (2004). Siderophore peptide, a new type of post-translationally modified antibacterial peptide with potent activity. The Journal of Biological Chemistry, 279, 28233–28242.

    Article  CAS  Google Scholar 

  • Tominaga, T., & Hatakeyama, Y. (2007). Development of innovative pediocin PA-1 by DNA shuffling among class IIa bacteriocins. Applied and Environmental Microbiology, 73, 5292–5299.

    Article  CAS  Google Scholar 

  • Tron, G. C., Pirali, T., Billington, R. A., Canonico, P. L., Sorba, G., & Genazzani, A. A. (2008). Click chemistry reactions in medicinal chemistry: applications of the 1,3-dipolar cycloaddition between azides and alkynes. Medicinal Research Reviews, 28, 278–308.

    Article  CAS  Google Scholar 

  • Trujillo, M., Rodríguez, E., & Laviña, M. (2001). ATP synthase is necessary for microcin H47 antibiotic action. Antimicrobial Agents and Chemotherapy, 45, 3128–3131.

    Article  CAS  Google Scholar 

  • Uesugi, A. R., & Moraru, C. I. (2009). Reduction of Listeria on ready-to-eat sausages after exposure to a combination of pulsed light and nisin. Journal of Food Protection, 72, 347–353.

    CAS  Google Scholar 

  • Uteng, M., Hauge, H. H., Markwick, P. R. L., Fimland, G., Mantzilas, D., Nissen-Meyer, J., et al. (2003). Three-dimensional structure in lipid micelles of the pediocin-like antimicrobial peptide sakacin P and a sakacin P variant that is structurally stabilized by an inserted C-terminal disulfide bridge. Biochemistry, 42, 11417–11426.

    Article  CAS  Google Scholar 

  • van Belkum, M. J., Worobo, R. W., & Stiles, M. E. (1997). Double-glycine-type leader peptides direct secretion of bacteriocins by ABC transporters: colicin V secretion in Lactococcus lactis. Molecular Microbiology, 23, 1293–1301.

    Article  Google Scholar 

  • Vassiliadis, G., Destoumieux-Garzón, D., Lombard, C., Rebuffat, S., & Peduzzi, J. (2010). Isolation and characterization of two members of the siderophore-microcin family, microcins M and H47. Antimicrobial Agents and Chemotherapy, 54, 288–297.

    Article  CAS  Google Scholar 

  • Villamil, L., Figueras, A., & y Novoa, B. (2003). Immunomodulatory effects of nisin in turbot (Scophthalmus maximus L.). Fish & Shellfish Immunology, 14, 157–169.

    Article  CAS  Google Scholar 

  • Vincent, P. A., & Morero, R. D. (2009). The structure and biological aspects of peptide antibiotic microcin J25. Current Medicinal Chemistry, 16, 538–549.

    Article  CAS  Google Scholar 

  • Wang, Y., Henz, M. E., Gallagher, N. L., Chai, S., Gibbs, A. C., Yan, L. Z., et al. (1999). Solution structure of carnobacteriocin B2 and implications for structure-activity relationships among type IIa bacteriocins from lactic acid bacteria. Biochemistry, 38, 15438–15447.

    Article  CAS  Google Scholar 

  • Wang, Y., & Cai, J. (2007). High-level expression of acidic partner-mediated antimicrobial peptide from tandem genes in Escherichia coli. Applied Biochemistry and Biotechnology, 141, 203–213.

    Article  CAS  Google Scholar 

  • Wesche, A. M., Gurtler, J. B., Marks, B. P., & Ryser, E. T. (2009). Stress, sublethal injury, resuscitation, and virulence of bacterial foodborne pathogens. Journal of Food Protection, 72, 1121–1138.

    CAS  Google Scholar 

  • Wiedemann, I., Breukink, E., van Kraaij, C., Kuipers, O. P., Bierbaum, G., de Kruijff, B., et al. (2001). Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. The Journal of Biological Chemistry, 276, 1772–1779.

    CAS  Google Scholar 

  • Willey, J. M., & van der Donk, W. A. (2007). Lantibiotics: peptides of diverse structure and function. Annual Review of Microbiology, 61, 477–501.

    Article  CAS  Google Scholar 

  • Woese, C. R., Kandler, O., & Wheelis, M. L. (1990). Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences of the United States of America, 87, 4576–4579.

    Article  CAS  Google Scholar 

  • World Health Organization (2002). Foodborne diseases, emerging. Fact sheet N°124. Available at: http://www.who.int/mediacentre/factsheets/fs124/en/ [Accedido Mayo 10, 2010].

  • World Health Organization (2004). Risk assessment of Listeria monocytogenes in ready-to-eat foods (World Health Organization, Food and Agriculture Organization of the United Nations) Available at: http://www.fao.org/docrep/010/y5394e/y5394e00.htm [Accedido Abril 7, 2010].

  • Xie, L., Miller, L. M., Chatterjee, C., Averin, O., Kelleher, N. L., & van der Donk, W. A. (2004). Lacticin 481: in vitro reconstitution of lantibiotic synthetase activity. Science, 303, 679–681.

    Article  CAS  Google Scholar 

  • Xu, X., Jin, F., Yu, X., Ren, S., Hu, J., & Zhang, W. (2007). High-level expression of the recombinant hybrid peptide cecropinA(1-8)-magainin2(1-12) with an ubiquitin fusion partner in Escherichia coli. Protein Expression and Purification, 55, 175–182.

    Article  CAS  Google Scholar 

  • Yang, C. C., & Konisky, J. (1984). Colicin V-treated Escherichia coli does not generate membrane potential. Journal of Bacteriology, 158, 757–759.

    CAS  Google Scholar 

  • Yuan, J., Zhang, Z., Chen, X., Yang, W., & Huan, L. (2004). Site-directed mutagenesis of the hinge region of nisinZ and properties of nisinZ mutants. Applied Microbiology and Biotechnology, 64, 806–815.

    Article  CAS  Google Scholar 

  • Zasloff, M. (2002). Antimicrobial peptides of multicellular organisms. Nature, 415, 389–395.

    Article  CAS  Google Scholar 

  • Zhong, X., Kolter, R., & Tai, P. C. (1996). Processing of colicin V-1, a secretable marker protein of a bacterial ATP binding cassette export system, requires membrane integrity, energy, and cytosolic factors. The Journal of Biological Chemttagdistry, 271, 28057–28063.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank María Mercedes Lopez for her support in the literature search. Financial support was provided by CONICET (Grants PIP 4996 and 2852), CIUNT (Grant 26/D439-4), and the Agencia Nacional de Promoción Científica y Técnica (PICT 2107, PAE 22642). L.A. is recipient of a CONICET fellowship. R.D.M. and A.B. are researchers of CONICET

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Augusto Bellomio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acuña, L., Morero, R.D. & Bellomio, A. Development of Wide-Spectrum Hybrid Bacteriocins for Food Biopreservation. Food Bioprocess Technol 4, 1029–1049 (2011). https://doi.org/10.1007/s11947-010-0465-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-010-0465-7

Keywords

Navigation