Skip to main content
Log in

Current Applications and Future Trends of Lactic Acid Bacteria and their Bacteriocins for the Biopreservation of Aquatic Food Products

  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

This review emphasizes the importance of novel biopreservation strategies and their application to ensure seafood quality and safety especially within the context of increasing demand for minimally processed aquatic food products. The paper addresses the major hazards linked to spoilage and pathogenic bacteria found in fresh and processed aquatic foods, mainly ready-to-eat seafood subjected to short-term storage, and the biological strategies that can be used to minimize their growth. This is followed by an overview of current knowledge about the inhibiting bacteriocin-producing lactic acid bacteria isolated from aquatic food products or that is being evaluated for ensuring safety on seafood and seafood products as well as the characteristics of their bacteriocins. The different strategies for the biopreservation of aquatic food products, such as protective cultures or spray drying, and their current and future applications for the preservation of seafood products are also explored. Finally, novel antimicrobial active and intelligent packaging strategies based on antimicrobials film allowing controlled release of bacteriocins to refrigerated aquatic food products are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aasen, I., Markussen, S., Møretrø, T., Katla, T., Axelsson, L., & Naterstad, K. (2003). Interactions of the bacteriocins sakacin P and nisin with food constituents. International Journal of Food Microbiology, 87(1–2), 35–43.

    CAS  Google Scholar 

  • Al-Holy, M., Lin, M., & Rasco, B. (2005). Destruction of Listeria monocytogenes in sturgeon (Acipenser transmontanus) caviar by a combination of nisin with chemical antimicrobials or moderate heat. Journal of Food Protection, 68(3), 512–520.

    CAS  Google Scholar 

  • Al-Holy, M., Ruiter, J., Lin, M., Kang, D. H., & Rasco, B. (2004). Inactivation of Listeria innocua in nisin-treated salmon (Oncorhynchus keta) and sturgeon (Acipenser transmontanus) caviar heated by radio frequency. Journal of Food Protection, 67(9), 1848–1854.

    CAS  Google Scholar 

  • Alves, V. F., De Martinis, E. C., Destro, M. T., Vogel, B. F., & Gram, L. (2005). Antilisterial activity of a Carnobacterium piscicola isolated from Brazilian smoked fish (surubim [Pseudoplatystoma sp.]) and its activity against a persistent strain of Listeria monocytogenes isolated from surubim. Journal of Food Protection, 68(10), 2068–2077.

    CAS  Google Scholar 

  • Anadon, A., Martinez-Larrañaga, M. R., & Aranzazu Martinez, M. (2006). Probiotics for animal nutrition in the European Union. Regulation and safety assessment. Regulatory Toxicology and Pharmacology, 45(1), 91–95.

    CAS  Google Scholar 

  • Ananou, S., Garriga, M., Hugas, M., Maqueda, M., Martinez-Bueno, M., Galvez, A., et al. (2005). Control of Listeria monocytogenes in model sausages by enterocin AS-48. International Journal of Food Microbiology, 103(2), 179–190.

    CAS  Google Scholar 

  • Arlindo, S., Calo, P., Franco, C., Prado, M., Cepeda, A., & Barros-Velazquez, J. (2006). Single nucleotide polymorphism analysis of the enterocin P structural gene of Enterococcus faecium strains isolated from nonfermented animal foods. Molecular Nutrition and Food Research, 50, 1229–1238.

    CAS  Google Scholar 

  • Aymerich, T., Holo, H., Havarstein, L. S., Hugas, M., Garriga, M., & Nes, I. F. (1996). Application of enterocins as biopreservatives against Listeria innocua in meat products. Applied and Environmental Microbiology, 62, 1676–1682.

    CAS  Google Scholar 

  • Balcazar, J. L., de Blas, I., Ruiz-Zarzuela, I., Cunningham, D., Vendrell, D., & Muzquiz, J. L. (2006a). The role of probiotics in aquaculture. Veterinary Microbiology, 114(3–4), 173–186.

    Google Scholar 

  • Balcazar, J. L., Decamp, O., Vendrell, D., De Blas, I., & Ruiz-Zarzuela, I. (2006b). Health and nutritional properties of probiotics in fish and shellfish. Microbial Ecology in Health and Disease, 18(2), 65–70.

    CAS  Google Scholar 

  • Baya, A. M., Toranzo, A. E., Lupiani, B., Li, T., Roberson, B. S., & Hetrick, F. M. (1991). Biochemical and serological characterization of Carnobacterium spp. isolated from farmed and natural populations of stripped bass and catfish. Applied and Environmental Microbiology, 57, 3114–3120.

    CAS  Google Scholar 

  • Becquet, P. (2003). EU assessment of enterococci as feed additives. International Journal of Food Microbiology, 88(2–3), 247–254.

    Google Scholar 

  • Ben-Embarek, P. K. (1994). Presence, detection and growth of Listeria monocytogenes in seafoods: a review. International Journal of Food Microbiology, 23, 17–34.

    CAS  Google Scholar 

  • Benkerroum, N., Daoudi, A., Hamraoui, T., Ghalfi, H., Thiry, C., Duroy, M., et al. (2005). Lyophilized preparations of bacteriocinogenic Lactobacillus curvatus and Lactococcus lactis subsp. lactis as potential protective adjuncts to control Listeria monocytogenes in dry-fermented sausages. Journal of Applied Microbiology, 98(1), 56–63.

    CAS  Google Scholar 

  • Bjorkroth, J., Ristiniemi, M., Vandamme, P., & Korkeala, H. (2005). Enterococcus species dominating in fresh modified-atmosphere-packaged, marinated broiler legs are overgrown by Carnobacterium and Lactobacillus species during storage at 6°C. International Journal of Food Microbiology, 97(3), 267–276.

    Google Scholar 

  • Bouttefroy, A., & Milliere, J. B. (2000). Nisin-curvaticin 13 combinations for avoiding the regrowth of bacteriocin resistant cells of Listeria monocytogenes ATCC 15313. International Journal of Food Microbiology, 62(1–2), 65–75.

    CAS  Google Scholar 

  • Bredholt, S., Nesbakken, T., & Holck, A. (1999). Protective cultures inhibit growth of Listeria monocytogenes and Escherichia coli O157:H7 in cooked, sliced, vacuum- and gas-packaged meat. International Journal of Food Microbiology, 53(1), 43–52.

    CAS  Google Scholar 

  • Bremer, P. J., & Osborne, C. M. (1998). Reducing total aerobic counts and Listeria monocytogenes on the surface of king salmon (Oncorhynchus tshawytscha). Journal of Food Protection, 61(7), 849–854.

    CAS  Google Scholar 

  • Brett, M. S. Y., Short, P., & McLauchlin, J. (1998). A small outbreak of listeriosis associated with smoked mussels. International Journal of Food Microbiology, 43, 223–229.

    CAS  Google Scholar 

  • Brillet, A., Pilet, M. F., Prevost, H., Bouttefroy, A., & Leroi, F. (2004). Biodiversity of Listeria monocytogenes sensitivity to bacteriocin-producing Carnobacterium strains and application in sterile cold-smoked salmon. Journal of Applied Microbiology, 97(5), 1029–1037.

    CAS  Google Scholar 

  • Brillet, A., Pilet, M. F., Prevost, H., Cardinal, M., & Leroi, F. (2005). Effect of inoculation of Carnobacterium divergens V41, a bio-preservative strain against Listeria monocytogenes risk, on the microbiological, chemical and sensory quality of cold-smoked salmon. International Journal of Food Microbiology, 104(3), 309–324.

    CAS  Google Scholar 

  • Brul, S., & Coote, P. (1999). Preservative agents in foods—Mode of action and microbial resistance mechanisms. International Journal of Food Microbiology, 50, 1–17.

    CAS  Google Scholar 

  • Buchanan, R. L., & Klawitter, L. A. (1992). Effect of temperature history on the growth of Listeria monocytogenes Scott A at refrigeration temperatures. Journal of Food Safety, 12, 199–217.

    Google Scholar 

  • Budu-Amoako, E., Ablett, R. F., Harris, J., & Delves-Broughton, J. (1999). Combined effect of nisin and moderate heat on destruction of Listeria monocytogenes in cold-pack lobster meat. Journal of Food Protection, 62(1), 46–50.

    CAS  Google Scholar 

  • Buonocore, G. G., Del Nobile, M. A., Panizza, A., Corbo, M. R., & Nicolais, L. (2003). A general approach to describe the antimicrobial agent release from highly swellable films intended for food packaging applications. Journal of Controlled Release, 90, 97–107.

    CAS  Google Scholar 

  • Cagri, A., Ustunol, Z., & Ryser, E. T. (2004). Antimicrobial edible films and coatings. Journal of Food Protection, 67, 833–848.

    CAS  Google Scholar 

  • Campos, C., Rodriguez, O., Calo-Mata, P., Prado, M., & Barros-Velazquez, J. (2006). Preliminary characterization of bacteriocins from Lactococcus lactis, Enterococcus faecium and Enterococcus mundtii strains isolated from turbot (Psetta maxima). Food Research International, 39, 356–364.

    CAS  Google Scholar 

  • Caplice, E., & Fitzgerald, G. F. (1999). Food fermentations: role of microorganisms in food production and preservation. International Journal of Food Microbiology, 50, 131–149.

    CAS  Google Scholar 

  • Castellano, P., & Vignolo, G. (2006). Inhibition of Listeria innocua and Brochothrix thermosphacta in vacuum-packaged meat by addition of bacteriocinogenic Lactobacillus curvatus CRL705 and its bacteriocins. Letters in Applied Microbiology, 43(2), 194–199.

    CAS  Google Scholar 

  • Cha, D. S., & Chinnan, M. S. (2004). Biopolymer-based antimicrobial packaging: A review. Critical Reviews in Food Science and Nutrition, 44(4), 223–237.

    CAS  Google Scholar 

  • Chinabut, S., & Puttinaowarat, S. (2005). The choice of disease control strategies to secure international market access for aquaculture products. Developmental Biology, 121, 255–261.

    CAS  Google Scholar 

  • Chi-Zhang, Y., Yam, K. L., & Chikindas, M. L. (2004). Effective control of Listeria monocytogenes by combination of nisin formulated and slowly released into a broth system. International Journal of Food Microbiology, 90, 15–22.

    CAS  Google Scholar 

  • Chmielewski, R. A., & Frank, J. F. (2003). A predictive model for heat inactivation of Listeria monocytogenes biofilm on stainless steel. Comprehensive Reviews in Food Science and Food Safety, 2, 22–32.

    CAS  Google Scholar 

  • Cintas, L. M., Casaus, P., Havarstein, L. S., Hernandez, P. E., & Nes, I. F. (1997). Biochemical and genetic characterization of enterocin P, a novel sec-dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum. Applied and Environmental Microbiology, 63(11), 4321–4330.

    CAS  Google Scholar 

  • Cintas, L. M., Casaus, P., Herranz, C., Nes, I. F., & Hernández, P. E. (2001). Bacteriocins of lactic acid bacteria. Food Science and Technology International, 7, 281–305.

    CAS  Google Scholar 

  • Cleveland, J., Montville, T. J., Nes, I. F., & Chikindas, M. L. (2001). Bacteriocins: Safe, natural antimicrobials for food preservation. International Journal of Food Microbiology, 71, 1–20.

    CAS  Google Scholar 

  • Collins, M. D., Farrow, J. A. E., Phillips, B. A., Ferusu, S., & Jones, D. (1987). Classification of Lactobacillus divergens, Lactobacillus piscicola, and some catalase-negative, asporogenous, rod-shaped bacteria from poultry in a new genus, Carnobacterium. International Journal of Systematic Bacteriology, 37, 310–316.

    Google Scholar 

  • Commission Directive 94/40/EC of 22 July 1994 amending Council Directive 87/53/EEC fixing guidelines for the assessment of additives in animal nutrition.

  • Commission Regulation (EC) No 1333/2004 of 20 July 2004 concerning the permanent authorisation of certain additive in feedingstuffs.

  • Connil, N., Plissoneau, L., Onno, B., Pilet, M. F., Prevost, H., & Dousset, X. (2002a). Growth of Carnobacterium divergens V41 and production of biogenic amines and divercin V41 in sterile cold-smoked salmon extract at varying temperatures, NaCl levels, and glucose concentrations. Journal of Food Protection, 65(2), 333–338.

    CAS  Google Scholar 

  • Connil, N., Prevost, H., & Dousset, X. (2002a). Production of biogenic amines and divercin V41 in cold smoked salmon inoculated with Carnobacterium divergens V41, and specific detection of this strain by multiplex-PCR. Journal of Applied Microbiology, 92(4), 611–617.

    CAS  Google Scholar 

  • Cooksey, K. (2005). Effectiveness of antimicrobial food packaging materials. Food Additives and Contaminants, 22(10), 980–987.

    CAS  Google Scholar 

  • Corcoran, B. M., Ross, R. P., Fitzgerald, G. F., & Stanton, C. (2004). Comparative survival of probiotic lactobacilli spray-dried in the presence of prebiotic substances. Journal of Applied Microbiology, 96(5), 1024–1039.

    CAS  Google Scholar 

  • Cortesi, M., Santoro, A., Murru, N., & Pepe, T. (1997). Distribution and behavior of Listeria monocytogenes in three lots of naturally-contaminated vacuum-packed smoked salmon stored at 2 and 10°C. International Journal of Food Microbiology, 37, 209–214.

    CAS  Google Scholar 

  • Council Directive 70/524/EEC of 23 November 1970 concerning additives on feeding-stuffs.

  • Cutter, C. N. (2002). Microbial control by packaging: A review. Critical Reviews in Food Science Nutrition, 42(2), 151–161.

    Google Scholar 

  • Daeschel, M. A. (1989). Antimicrobial substances from lactic acid bacteria for use as food preservatives. Food Technology, 43, 164–167.

    CAS  Google Scholar 

  • Dalgaard, P., Vancanneyt, M., Euras Vilalta, N., Swings, J., Fruekilde, P., & Leisner, J. J. (2003). Identification of lactic acid bacteria from spoilage associations of cooked and brined shrimps stored under modified atmosphere between 0°C and 25°C. Journal of Applied Microbiology, 94(1), 80–89.

    CAS  Google Scholar 

  • De Jong, A. R., Boumans, H., Slaghek, T., Van Veen, J., Rijk, R., & Van Zandvoort, M. (2005). Active and intelligent packaging for food: is it the future? Food Additive Contaminants, 22(10), 975–979.

    Google Scholar 

  • De Kruijf, N. N., van Beest, M., Rijk, R., Sipilainen-Malm, T., Paseiro, L. P., & De Meulenaer, B. (2002). Active and intelligent packaging: Applications and regulatory aspects. Food Additives and Contaminants, 19(Suppl.), 144–162.

    Google Scholar 

  • De Vuyst, L., & Vandamme, E. J. (1994). Bacteriocins of lactic acid bacteria. London, England: Blackie Academie & Professional.

    Google Scholar 

  • Delves-Broughton, J. (1990). Nisin and its uses as a food preservative. Food Technology, 44(11), 100–118.

    CAS  Google Scholar 

  • Delves-Broughton, J., Blackburn, P., Evans, R. J., & Hugenholtz, J. (1996). Applications of the bacteriocin, nisin. Antonie Van Leeuwenhoek, 69(2), 193–202.

    CAS  Google Scholar 

  • Diep, D. B., & Nes, I. F. (2002). Ribosomally synthesized antibacterial peptides in Gram-positive bacteria. Current Drug Targets, 3(2), 107–122.

    CAS  Google Scholar 

  • Duffes, F., Corre, C., Leroi, F., Dousset, X., & Boyaval, P. (1999a) Inhibition of Listeria monocytogenes by in situ produced and semipurified bacteriocins of Carnobacterium spp. on vacuum-packed, refrigerated cold-smoked salmon. Journal of Food Protection, 62(12), 1394–1403.

    CAS  Google Scholar 

  • Duffes, F., Leroi, F., Boyaval, P., & Dousset, X. (1999b). Inhibition of Listeria monocytogenes by Carnobacterium spp. strains in a simulated cold smoked fish system stored at 4°C. International Journal of Food Microbiology, 47(1–2), 33–42.

    CAS  Google Scholar 

  • Eaton, T. J., & Gasson, M. J. (2001). Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Applied and Environmental Microbiology, 67(4), 1628–1635.

    CAS  Google Scholar 

  • Eijsink, V. G., Skeie, M., Middelhoven, P. H., Brurberg, M. B., & Nes, I. F. (1998). Comparative studies of class IIa bacteriocins of lactic acid bacteria. Applied and Environmental Microbiology, 64(9), 3275–3281.

    CAS  Google Scholar 

  • Einarsson, H., & Lauzon, H. L. (1995). Biopreservation of brined shrimp (Pandalus borealis) by bacteriocins from lactic acid bacteria. Applied and Environmental Microbiology, 61(2), 669–676.

    CAS  Google Scholar 

  • Elotmani, F., & Assobhei, O. (2004), In vitro inhibition of microbial flora of fish by nisin and lactoperoxidase system. Letters in Applied Microbiology, 38(1), 60–65.

    CAS  Google Scholar 

  • Ennahar, S., Deschamps, N., & Richard, J. (2000). Natural variation in susceptibility of Listeria strains to class IIa bacteriocins. Current Microbiology, 41(1), 1–4.

    CAS  Google Scholar 

  • Ennahar, S., Sonomoto, K., & Ishizaki, A. (1999). Class IIa bacteriocins from lactic acid bacteria: antibacterial activity and food preservation. Journal of Bioscience and Bioengeneering, 87(6), 705–716.

    CAS  Google Scholar 

  • Ercolini, D., Storia, A., Villani, F., & Mauriello, G. (2006). Effect of a bacteriocin-activated polythene film on Listeria monocytogenes as evaluated by viable staining and epifluorescence microscopy. Journal of Applied Microbiology, 100(4), 765–772.

    CAS  Google Scholar 

  • Ericsson, H., Eklow, A., Danielsson-Tham, M. L., Locarevic, S., Mentzing, L. O., Persson, I., et al. (1997). An outbreak of listeriosis suspected to have been caused by rainbow trout. Journal of Clinical Microbiology, 35(11), 2904–2907.

    CAS  Google Scholar 

  • Ericsson, H., & Stalhandske, P. (1997). PCR detection of Listeria monocytogenes in ‘gravad’ rainbow trout. International Journal of Food Microbiology, 35, 281–285.

    CAS  Google Scholar 

  • Farzanfar, A. (2006). The use of probiotics in shrimp aquaculture. FEMS Immunology and Medical Microbiology, 48(2), 149–158.

    CAS  Google Scholar 

  • Fonnesbech Vogel, B., Huss, H. H., Ojeniyi, B., Ahrens, P., & Gram, L. (2001). Elucidation of Listeria monocytogenes contamination routes in cold-smoked salmon processing plants detected by DNA-based typing methods. Applied and Environmental Microbiology, 67(6), 2586–2595.

    CAS  Google Scholar 

  • Foulquie Moreno, M. R., Sarantinopoulos, P., Tsakalidou, E., & De Vuyst, L. (2006). The role and application of enterococci in food and health. International Journal of Food Microbiology, 106, 1–24.

    CAS  Google Scholar 

  • Francis, G. A., & O’Beirne, D. (1998). Effects of storage atmosphere on Listeria monocytogenes and competing microflora using a surface model system. International Journal of Food Microbiology, 33, 465–476.

    CAS  Google Scholar 

  • Franklin, N. B., Cooksey, K. D., & Getty, K. J. (2004). Inhibition of Listeria monocytogenes on the surface of individually packaged hot dogs with a packaging film coating containing nisin. Journal of Food Protection, 67(3), 480–485.

    CAS  Google Scholar 

  • Franz, C. M., Holzapfel, W. H., & Stiles, M. E. (1999). Enterococci at the crossroads of food safety? International Journal of Food Microbiology, 47(1–2), 1–24.

    CAS  Google Scholar 

  • Franz, C. M., Muscholl-Silberhorn, A. B., Yousif, N. M., Vancanneyt, M., Swings, J., & Holzapfel, W. H. (2001). Incidence of virulent factors and antibiotic resistance among Enterococci isolated from food. Applied and Environmental Microbiology, 67, 4385–4389.

    CAS  Google Scholar 

  • Franz, C. M., Stiles, M. E., Schleifer, K. H., & Holzapfel, W. H. (2003). Enterococci in foods—A conundrum for food safety. International Journal of Food Microbiology, 88(2–3), 105–122.

    CAS  Google Scholar 

  • Gardiner, G. E., O’Sullivan, E., Kelly, J., Auty, M. A., Fitzgerald, G. F., Collins, J. K., et al. (2000). Comparative survival rates of human-derived probiotic Lactobacillus paracasei and L. salivarius strains during heat treatment and spray drying. Applied and Environmental Microbiology, 66(6), 2605–2612.

    CAS  Google Scholar 

  • Garver, K. I., & Muriana, P. M. (1993). Detection, identification and characterization of bacteriocin-producing lactic acid bacteria from retail food products. International Journal of Food Microbiology, 19(4), 241–258.

    CAS  Google Scholar 

  • Ghalfi, H., Allaoui, A., Destain, J., Benkerroum, N., & Thonart, P. (2006). Bacteriocin activity by Lactobacillus curvatus CWBI-B28 to inactivate Listeria monocytogenes in cold-smoked salmon during 4°C storage. Journal of Food Protection, 69(5), 1066–1071.

    CAS  Google Scholar 

  • Gibbs, P. A. (1987). Novel uses of lactic acid fermentation in food preservation. Journal of Applied Bacteriology, Symposium Supplement, 51S–58S.

  • Giraffa, G. (2003). Functionality of enterococci in dairy products. International Journal of Food Microbiology, 88(2–3), 215–222.

    CAS  Google Scholar 

  • Giraffa, G., Carminati, D., & Neviani, E. (1997). Enterococci isolated from dairy products: A review of risks and potential technological use. Journal of Food Protection, 60, 732–738.

    Google Scholar 

  • Gonzalez, C. J., Encinas, J. P., Garcia-Lopez, M. L., & Otero, A. (2000). Characterisation and identification of lactic acid bacteria from freshwater fishes. Food Microbiology, 17, 383–391.

    CAS  Google Scholar 

  • Gonzalez, C. J., Lopez-Diaz, T. M., García-López, M. L., Prieto, M., & Otero, A. (1999). Bacterial microflora of wild brown trout (Salmo trutta), wild pike (Esox hucius) and aquacultured rainbow trout (Oncorhynchus mykiss). Journal of Food Protection, 62, 1270–1277.

    CAS  Google Scholar 

  • Gonzalez-Rodriguez, M. N., Sanz, J. J., Santos, J. A., Otero, A., & Garcia-Lopez, M. L. (2002a). Numbers and types of microorganisms in vacuum-packed cold-smoked freshwater fish at the retail level. International Journal of Food Microbiology, 77(1–2), 161–168.

    Google Scholar 

  • Gonzalez-Rodriguez, M. N., Sanz, J. J., Santos, J. A., Otero, A., & Garcia-Lopez, M. L. (2002b). Foodborne pathogenic bacteria in prepackaged fresh retail portions of farmed rainbow trout and salmon stored at 3°C. International Journal of Food Microbiology, 76(1–2), 135–141.

    CAS  Google Scholar 

  • Graslund, S., & Bengtsson, B. E. (2001). Chemicals and biological products used in south-east Asian shrimp farming, and their potential impact on the environment—A review. Science of the Total Environment, 280(1–3), 93–131.

    CAS  Google Scholar 

  • Gratia, A. (1925). Sur un remarquable exemple dántagonisme entre souches de colibacille. Comptes Rendues de la Societe de Biologie, 91, 1040–1041.

    Google Scholar 

  • Grower, J. L., Cooksey, K., & Getty, K. J. (2004). Development and characterization of an antimicrobial packaging film coating containing nisin for inhibition of Listeria monocytogenes. Journal of Food Protection, 67(3), 475–479.

    CAS  Google Scholar 

  • Gudmundsdóttir, S., Gudbjornsdóttir, B., Einarsson, H., Kristinsson, K. G., & Kristjansson, M. (2006). Contamination of cooked peeled shrimp (Pandalus borealis) by Listeria monocytogenes during processing at two processing plants. Journal of Food Protection, 69(6), 1304–1311.

    Google Scholar 

  • Gudmundsdóttir, S., Gudbjornsdóttir, B., Lauzon, H. L., Einarsson, H., Kristinsson, K. G., & Kristjansson, M. (2005). Tracing Listeria monocytogenes isolates from cold-smoked salmon and its processing environment in Iceland using pulsed-field gel electrophoresis. International Journal of Food Microbiology, 101(1), 41–51.

    Google Scholar 

  • Guerra, N. P., Macias, C. L., Agrasar, A. T., & Castro, L. P. (2005). Development of a bioactive packaging cellophane using Nisaplin as biopreservative agent. Letters in Applied Microbiology, 40(2), 106–110.

    CAS  Google Scholar 

  • Han, J. H. (2000). Antimicrobial food packaging. Food Technology, 54(3), 56–65.

    Google Scholar 

  • Hansen, C. H., Vogel, B. F., & Gram, L. (2006). Prevalence and survival of Listeria monocytogenes in Danish aquatic and fish-processing environments. Journal of Food Protection, 69(9), 2113–2122.

    Google Scholar 

  • Hastein, T., Hjeltnes, B., Lillehaug, A., Utne Skare, J., Berntssen, M., & Lundebye, A. K. (2006). Food safety hazards that occur during the production stage: challenges for fish farming and the fishing industry. Scientific and Technical Review, 25(2), 607–625.

    CAS  Google Scholar 

  • Heinitz, M. L., & Johnson, J. M. (1998). The incidence of Listeria spp., Salmonella spp., and Clostridium botulinum in smoked fish and shellfish. Journal of Food Protection, 61, 318–323.

    CAS  Google Scholar 

  • Herbin, S., Mathieu, F., Brule, F., Branlant, C., Lefebvre, G., & Lebrihi, A. (1997). Characteristics and genetic determinants of bacteriocin activities produced by Carnobacterium piscicola CP5 isolated from cheese. Current Microbiology, 35(6), 319–326.

    CAS  Google Scholar 

  • Herranz, C., Casaus, P., Mukhopadhyay, S., Martinez, J. M., Rodriguez, J. M., Nes, F., et al. (2001). Enterococcus faecium P21: a strain occurring naturally in dry-fermented sausages producing the class II bacteriocins enterocin A and enterocin B. Food Microbiology, 18, 115–131.

    CAS  Google Scholar 

  • Herranz, C., Mukhopadhyay, S., Casaus, P., Martınez, J. M., Rodrıguez, J. M., Nes, I. F., et al. (1999). Biochemical and genetic evidence of enterocin P production by two Enterococcus faecium-like strains isolated from fermented sausages. Current Microbiology, 39, 282–290.

    CAS  Google Scholar 

  • Herrera, F. C., Santos, J. A., Otero, A., & Garcia-Lopez, M. L. (2006). Occurrence of foodborne pathogenic bacteria in retail prepackaged portions of marine fish in Spain. Journal of Applied Microbiology, 100(3), 527–536.

    CAS  Google Scholar 

  • Hesselman, D. M., Motes, M. L., & Lewis, J. P. (1999). Effects of a commercial heat-shock process on Vibrio vulnificus in the American oyster, Crassostrea virginica, harvested from the Gulf Coast. Journal of Food Protection, 62(11), 1266–1269.

    CAS  Google Scholar 

  • Himelbloom, B., Nilsson, L., & Gram, L. (2001), Factors affecting production of an antilisterial bacteriocin by Carnobacterium piscicola strain A9b in laboratory media and model fish systems. Journal of Applied Microbiology, 91(3), 506–513.

    CAS  Google Scholar 

  • Hiu, S. F., Holt, R. A., Sriranganathan, N., Seidler, R. J., & Fryer, J. L. (1984). Lactobacillus piscicola, a new species from salmonid fish. International Journal of Systematic Bacteriology, 34, 393–400.

    CAS  Google Scholar 

  • Hoffman, A. D., Gall, K. L., Norton, D. M., & Wiedmann, M. (2003). Listeria monocytogenes contamination patterns for the smoked fish processing environment and for raw fish. Journal of Food Protection, 66(1), 52–60.

    Google Scholar 

  • Hoffman, K. L., Han, I. Y., & Dawson, P. L. (2001). Antimicrobial effects of corn zein films impregnated with nisin, lauric acid, and EDTA. Journal of Food Protection, 64(6), 885–889.

    CAS  Google Scholar 

  • Holck, A. L., Axelsson, L., Huehne, K., & Kroeckel, L. (1994). Purification and cloning of sakacin 674, a bacteriocin from Lactobacillus sake Lb674. FEMS Microbiology Letters, 115(2–3), 143–150.

    CAS  Google Scholar 

  • Hugas, M., Garriga, M., & Aymerich, M. T. (2003). Functionality of enterococci in meat products. International Journal of Food Microbiology, 88, 223–233.

    CAS  Google Scholar 

  • Huis in’t Veld, J. H. J. (1996). Microbial and biochemical spoilage of foods: An overview. International Journal of Food Microbiology, 33, 1–18.

    Google Scholar 

  • Huss, H. H. (1995). Quality and quality changes in fresh fish. In H. H. Huss (Ed.), FAO fishing technical paper 348 (pp. 51). Rome, Italy: FAO.

  • Jack, R. W., Wan, J., Gordon, J., Harmark, K., Davidson, B. E., Hillier, A. J., et al. (1996). Characterization of the chemical and antimicrobial properties of piscicolin 126, a bacteriocin produced by Carnobacterium piscicola JG126. Applied and Environmental Microbiology, 62(8), 2897–2903.

    CAS  Google Scholar 

  • Jeppesen, V. T., & Huss, H. H. (1993). Characteristic and antagonistic activity of lactic acid bacteria isolated from chilled fish products. International Journal of Food Microbiology, 18, 305–320.

    CAS  Google Scholar 

  • Jørgensen, L. V., & Huss, H. H. (1998). Prevalence and growth of Listeria monocytogenes in naturally contaminated seafood. International Journal of Food Microbiology, 42(1–2), 127–131.

    Google Scholar 

  • Katla, T., Naterstad, K., Vancanneyt, M., Swings, J., & Axelsson, L. (2003). Differences in susceptibility of Listeria monocytogenes strains to sakacin P, sakacin A, pediocin PA-1, and nisin. Applied and Environmental Microbiology, 69(8), 4431–4437.

    CAS  Google Scholar 

  • Klaenhammer, T. R. (1988). Bacteriocins of lactic acid bacteria. Biochimie, 70, 337–349.

    CAS  Google Scholar 

  • Klaenhammer, T. R. (1993). Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiology Reviews, 12, 39–86.

    CAS  Google Scholar 

  • Kumar, S., Tamura, K., & Nei, M. (2004). MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics, 5, 150–163.

    CAS  Google Scholar 

  • Lappi, V. R., Ho, A., Gall, K., & Wiedmann, M. (2004a). Prevalence and growth of Listeria on naturally contaminated smoked salmon over 28 days of storage at 4°C. Journal of Food Protection, 67(5), 1022–1026.

    Google Scholar 

  • Lappi, V. R., Thimothe, J., Walker, J., Bell, J., Gall, K., Moody, M. W., et al. (2004b) Impact of intervention strategies on Listeria contamination patterns in crawfish processing plants: A longitudinal study. Journal of Food Protection, 67(6), 1163–1169.

    Google Scholar 

  • Laukova, A., Czikkova, S., Laczkova, S., & Turek, P. (1999). Use of enterocin CCM 4231 to control Listeria monocytogenes in experimentally contaminated dry fermented Hornad salami. International Journal of Food Microbiology, 52(1–2), 115–119.

    CAS  Google Scholar 

  • Laursen, B. G., Bay, L., Cleenwerck, I., Vancanneyt, M., Swings, J., Dalgaard, P., et al. (2005). Carnobacterium divergens and Carnobacterium maltaromaticum as spoilers or protective cultures in meat and seafood: phenotypic and genotypic characterization. Systematic Applied Microbiology, 28(2), 151–164.

    CAS  Google Scholar 

  • Leisner, J. J. (1992). Characterisation of lactic acid bacteria isolated from lightly preserved fish products and their ability to metabolise various carbohydrates and amino acids. PhD thesis. Royal Veterinary and Agricultural University, Denmark.

  • Leisner, J. J., Millan, J. C., Huss, H. H., & Larsen, C. M. (1994). Production of histamine and tyramine by lactic acid bacteria isolated from vacuum-packaged sugar-salted fish. Journal of Applied Bacteriology, 76, 417–423.

    CAS  Google Scholar 

  • Leroi, F., Arbey, N., Joffraud, J. J., & Chevalier, F. (1996). Effect of inoculation with lactic acid bacteria on extending the shelf-life of vacuum-packed cold smoked salmon. International Journal of Food Science and Technology, 31(6), 497–504.

    CAS  Google Scholar 

  • Leroi, F., Joffraud, J. J., Chevalier, F., & Cardinal, M. (1998). Study of the microbial ecology of cold-smoked salmon during storage at 8°C. International Journal of Food Microbiology, 39, 111–121.

    CAS  Google Scholar 

  • Lindgren, S. E., & Dobrogosz, W. J. (1990). Antagonistic activities of lactic acid bacteria in food and feed fermentations. FEMS Microbiology Reviews, 87, 149–164.

    CAS  Google Scholar 

  • Luchansky, J. B., & Call, J. E. (2004). Evaluation of nisin-coated cellulose casings for the control of Listeria monocytogenes inoculated onto the surface of commercially prepared frankfurters. Journal of Food Protection, 67(5), 1017–1021.

    CAS  Google Scholar 

  • Maldonado, A., Ruiz-Barba, J. L., & Jimenez-Diaz, R. (2004). Production of plantaricin NC8 by Lactobacillus plantarum NC8 is induced in the presence of different types of Gram-positive bacteria. Archives of Microbiology, 181(1), 8–16.

    CAS  Google Scholar 

  • Mathieu, F., Michel, M., Lebrihi, A., & Lefebvre, G. (1994). Effect of the bacteriocin carnocin CP5 and of the producing strain Carnobacterium piscicola CP5 on the viability of Listeria monocytogenes ATCC 15313 in salt solution, broth and skimmed milk, at various incubation temperatures. International Journal of Food Microbiology, 22(2–3), 155–172.

    CAS  Google Scholar 

  • Mauriello, G., De Luca, E., La Storia, A., Villani, F., & Ercolini, D. (2005). Antimicrobial activity of a nisin-activated plastic film for food packaging. Letters in Applied Microbiology, 41(6), 464–469.

    CAS  Google Scholar 

  • Mauriello, G., Ercolini, D., La Storia, A., Casaburi, A., & Villani, F. (2004). Development of polythene films for food packaging activated with an antilisterial bacteriocin from Lactobacillus curvatus 32Y. Journal of Applied Microbiology, 97, 314–322.

    CAS  Google Scholar 

  • McMullen, L. M., & Stiles, M. E. (1996). Potential for use of bacteriocin-producing lactic acid bacteria in the preservation of meats. Journal of Food Protection, Suppl. 64–71.

  • Mejlholm, O., Boknaes, N., & Dalgaard, P. (2005). Shelf life and safety aspects of chilled cooked and peeled shrimps (Pandalus borealis) in modified atmosphere packaging. Journal of Applied Microbiology, 99(1), 66–76.

    CAS  Google Scholar 

  • Miettinen, H., Arvola, A., Luoma, T., & Wirtanen, G. (2003). Prevalence of Listeria monocytogenes in, and microbiological and sensory quality of, rainbow trout, whitefish, and vendace roes from Finnish retail markets. Journal of Food Protection, 66(10), 1832–1839.

    Google Scholar 

  • Miettinen, M. K., Siitonen, A., Heiskanen, P., Haajanen, H., Bjorkroth, K. J., & Korkeala, H. J. (1999). Molecular epidemiology of an outbreak of fefrible gastroenteritis caused by Listeria monocytogenes in cold-smoked trout. Journal of Clinical Microbiology, 37(7), 2358–2360.

    CAS  Google Scholar 

  • Miettinen, H., & Wirtanen, G. (2005). Prevalence and location of Listeria monocytogenes in farmed rainbow trout. International Journal of Food Microbiology, 104(2), 135–143.

    Google Scholar 

  • Mora, D., Scarpellini, M., Franzetti, L., Colombo, S., & Galli, A. (2003). Reclassification of Lactobacillus maltaromicus (Miller et al., 1974) DSM 20342T and DSM 20344 and Carnobacterium piscicola (Collins et al., 1987) DSM 20730T and DSM 20722 as Carnobacterium maltaromaticum comb. nov. International Journal of Systematic and Evolutionary Microbiology, 53, 675–678.

    CAS  Google Scholar 

  • Morgan, S. M., Galvin, M., Ross, R. P., & Hill, C. (2001). Evaluation of a spray-dried lacticin 3147 powder for the control of Listeria monocytogenes and Bacillus cereus in a range of food systems. Letters in Applied Microbiology, 33(5), 387–391.

    CAS  Google Scholar 

  • Natrajan, N., & Sheldon, B. W. (2000). Efficacy of nisin-coated polymer films to inactivate Salmonella typhimurium on fresh broiler skin. Journal of Food Protection, 63(9), 1189–1196.

    CAS  Google Scholar 

  • Nettles, C. G., & Barefoot, S. F. (1993). Biochemical and genetic characteristics of bacteriocins of food-associated lactic acid bacteria. Journal of Food Protection, 56, 338–356.

    CAS  Google Scholar 

  • Nikoskelainen, S., Salminen, S., Bylund, G., & Ouwehand, A. C. (2001). Characterization of the properties of human- and dairy-derived probiotics for prevention of infectious diseases in fish. Applied Environmental Microbiology, 67(6), 2430–2435.

    CAS  Google Scholar 

  • Nilsson, L., Gram, L., & Huss, H. H. (1999). Growth control of Listeria monocytogenes on cold-smoked salmon using a competitive lactic acid bacteria flora. Journal of Food Protection, 62(4), 336–342.

    CAS  Google Scholar 

  • Nilsson, L., Huss, H. H., & Gram, L. (1997). Inhibition of Listeria monocytogenes on cold-smoked salmon by nisin and carbon dioxide atmosphere. International Journal of Food Microbiology, 38(2–3), 217–227.

    CAS  Google Scholar 

  • Nilsson, L., Ng, Y. Y., Christiansen, J. N., Jorgensen, B. L., Grotinum, D., & Gram, L. (2004). The contribution of bacteriocin to inhibition of Listeria monocytogenes by Carnobacterium piscicola strains in cold-smoked salmon systems. Journal of Applied Microbiology, 96(1), 133–143.

    CAS  Google Scholar 

  • Nykanen, A., Weckman, K., & Lapvetelainen, A. (2000). Synergistic inhibition of Listeria monocytogenes on cold-smoked rainbow trout by nisin and sodium lactate. International Journal of Food Microbiology, 61(1), 63–72.

    CAS  Google Scholar 

  • O’Keeffe, T., & Hill, C. (2000). Bacteriocins. In Robinson (Ed.), Encyclopaedia of food microbiology (pp. 183–197). London: Academic.

    Google Scholar 

  • Paez-Osuna, F. (2001). The environmental impact of shrimp aquaculture: Causes, effects, and mitigating alternatives. Environmental Management, 28(1), 131–140.

    CAS  Google Scholar 

  • Paludan-Muller, C., Dalgaard, P., Huss, H. H., & Gram, L. (1998). Evaluation of the role of Carnobacterium piscicola in spoilage of vacuum- and modified-atmosphere-packed cold-smoked salmon stored at 5°C. International Journal of Food Microbiology, 39(3), 155–166.

    CAS  Google Scholar 

  • Pelle, E., Dousset, X., Prevost, H., & Drider, D. (2005). Specific molecular detection of Carnobacterium piscicola SF668 in cold smoked salmon. Letters in Applied Microbiology, 40(5), 364–368.

    CAS  Google Scholar 

  • Pilet, M. F., Dousset, X., Barré, R., Novel, G., Desmazeaud, M., & Piard, J. C. (1995). Evidence for two bacteriocins produced by Carnobacterium piscicola and Carnobacterium divergens isolated from fish and active against Listeria monocytogenes. Journal of Food Protection, 58, 256–262.

    Google Scholar 

  • Quadri, L. E., Sailer, M., Roy, K. L., Vederas, J. C., & Stiles, M. E. (1994). Chemical and genetic characterization of bacteriocins produced by Carnobacterium piscicola LV17B. Journal of Biological Chemistry, 269(16), 12204–12211.

    CAS  Google Scholar 

  • Quintavalla, S., & Vicini, L. (2002). Antimicrobial food packaging in meat industry. Meat Science, 62, 373–380.

    CAS  Google Scholar 

  • Richard, C., Brillet, A., Pilet, M. F., Prevost, H., & Drider, D. (2003). Evidence on inhibition of Listeria monocytogenes by divercin V41 action. Letters in Applied Microbiology, 36(5), 288–292.

    CAS  Google Scholar 

  • Riley, M. A., & Wertz, J. E. (2002). Bacteriocins: Evolution, ecology, and application. Annual Reviews of Microbiology, 56, 117–137.

    CAS  Google Scholar 

  • Ringø, E., Bendiksen, H. R., Wesmajervi, M. S., Olsen, R. E., Jansen, P. A., & Mikkelsen, H. (2000). Lactic acid bacteria associated with the digestive tract of Atlantic salmon (Salmo salar L.). Journal of Applied Microbiology, 89, 317–322.

    Google Scholar 

  • Ringø, E., & Gatesoupe, F.-J. (1998). Lactic acid bacteria in fish: A review. Aquaculture, 160, 177–203.

    Google Scholar 

  • Rodriguez, O. (2006). Aplicación de nuevas tecnologías de conservación basadas en el hielo líquido en la mejora de la calidad microbiológica de los productos marinos. PhD Thesis. Department of Analytical Chemistry, Nutrition and Food Science, University of Santiago de Compostela, Santiago de Compostela, Spain.

  • Rogers, L. A., & Whittier, E. D. (1928). Limiting factors in lactic acid fermentation. Journal of Bacteriology, 16, 211–229.

    CAS  Google Scholar 

  • Rorvik, L. M., Caugant, D. A., & Yndestad, M. (1995). Contamination pattern of Listeria monocytogenes and other Listeria spp. in a salmon slaughterhouse and smoked salmon processing plant. International Journal of Food Microbiology, 25, 19–27.

    CAS  Google Scholar 

  • Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406–425.

    CAS  Google Scholar 

  • Sambasivam, S., Chandran, R., & Khan, S. A. (2003). Role of probiotics on the environment of shrimp pond. Journal of Environmental Biology, 24(1), 103–106.

    CAS  Google Scholar 

  • Savadogo, A., Ouattara, C. A., Bassole, I. H., & Traore, S. A. (2006). Bacteriocins and lactic acid bacteria. African Journal of Biotechnology, 5(9), 678–683.

    CAS  Google Scholar 

  • Schillinger, U., Geisen, R., & Holzapfel, W. H. (1996). Potential of antagonistic microorganisms and bacteriocins for the biological preservation of foods. Trends in Food Science and Technology, 7, 158–164.

    CAS  Google Scholar 

  • Schillinger, U., Stiles, M. E., & Holzapfel, W. H. (1993). Bacteriocin production by Carnobacterium piscicola LV 61. International Journal of Food Microbiology, 20, 131–147.

    CAS  Google Scholar 

  • Schleifer, K. H., & Kilpper-Balz, R. (1984). Relatedness and classification of Streptococcus mutans and “mutans-like” streptococci. International Journal of Systematic Bacteriology, 34, 31–34.

    Article  Google Scholar 

  • Schobitz, R., Zaror, T., Leon, O., & Costa, M. (1999). A bacteriocin from Carnobacterium piscicola for the control of Listeria monocytogenes in vacuum-packaged meat. Food Microbiology, 16, 249–255.

    CAS  Google Scholar 

  • Sikorski, Z. E., & Kalodziejska, I. (2002). Microbial risks in mild hot smoking of fish. Critical Reviews in Food Science and Nutrition, 42(1), 35–51.

    Google Scholar 

  • Silva, J., Carvalho, A. S., Teixeira, P., & Gibbs, P. A. (2002). Bacteriocin production by spray-dried lactic acid bacteria. Letters in Applied Microbiology, 34(2), 77–81.

    CAS  Google Scholar 

  • Siragusa, G. R., Cutter, C. N., & Willett, J. L. (1999). Incorporation of bacteriocin in plastic retains activity and inhibits surface growth of bacteria on meat. Food Microbiology, 16, 229–235.

    CAS  Google Scholar 

  • Stiles, M. E. (1996). Biopreservation by lactic acid bacteria. Antonie Van Leeuwenhoek, 70, 331–345.

    CAS  Google Scholar 

  • Stiles, M. E., & Holzapfel, W. H. (1997). Lactic acid bacteria of foods and their current taxonomy. International Journal of Food Microbiology, 36, 1–29.

    CAS  Google Scholar 

  • Stoffels, G., Nes, I. F., & Gudmundsdóttir, A. (1992). Isolation and properties of a bacteriocin-producing Carnobacterium piscicola isolated from fish. Journal of Applied Bacteriology, 73, 309–326.

    CAS  Google Scholar 

  • Stoffels, G., Sahl, H. G., & Gudmundsdóttir, A. (1993). Carnocin UI49, a potential biopreservative produced by Carnobacterium piscicola: Large scale purification and activity against various Gram-positive bacteria including Listeria sp. International Journal of Food Microbiology, 20(4), 199–210.

    CAS  Google Scholar 

  • Szabo, E. A., & Cahill, M. E. (1998). The combined affects of modified atmosphere, temperature, nisin and ALTA 2341 on the growth of Listeria monocytogenes. International Journal of Food Microbiology, 43(1–2), 21–31.

    CAS  Google Scholar 

  • Szabo, E. A., & Cahill, M. E. (1999). Nisin and ALTA 2341 inhibit the growth of Listeria monocytogenes on smoked salmon packaged under vacuum or 100% CO2. Letters in Applied Microbiology, 28(5), 373–377.

    CAS  Google Scholar 

  • Tagg, J. R., Dajani, A. S., & Wannamaker, L. W. (1976). Bacteriocins of Gram-positive bacteria. Bacteriological Reviews, 40, 722–756.

    CAS  Google Scholar 

  • Thimothe, J., Nightingale, K. K., Gall, K., Scott, V. N., & Wiedmann, M. (2004). Tracking of Listeria monocytogenes in smoked fish processing plants. Journal of Food Protection, 67(2), 328–341.

    Google Scholar 

  • Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680.

    CAS  Google Scholar 

  • Tichaczek, P. S., Nissen-Meyer, J., Nes, I. F., Vogel, R. F., & Hammes, W. P. (1992). Characterization of the bacteriocins curvacin A from Lactobacillus curvatus LTH1174 and sakacin from L. sake LTH673. Systematic Applied Microbiology, 15, 460–468.

    CAS  Google Scholar 

  • Tome, E., Teixeira, P., & Gibbs, P. A. (2006). Antilisterial inhibitory lactic acid bacteria isolated from commercial cold smoked salmon. Food Microbiology, 23(4), 399–405.

    CAS  Google Scholar 

  • Vandenberg, P. A. (1993). Lactic acid bacteria, their metabolic products and interference with microbial growth. FEMS Microbiological Reviews, 12, 221–238.

    Google Scholar 

  • Vermeiren, L., Devlieghere, F., & Debevere, J. (2002). Effectiveness of some recent antimicrobial packaging concepts. Food Additives and Contaminants, 19, Suppl. 163–171.

    Google Scholar 

  • Verschuere, L., Rombaut, G., Sorgeloos, P., & Verstraete, W. (2000). Probiotic bacteria as biological control agents in aquaculture. Microbiology and Molecular Biology Reviews, 64(4), 655–671.

    CAS  Google Scholar 

  • Vescovo, M., Scolari, G., & Zacconi, C. (2006). Inhibition of Listeria innocua growth by antimicrobial-producing lactic acid cultures in vacuum-packed cold-smoked salmon. Food Microbiology, 23(7), 689–693.

    Google Scholar 

  • Wessels, S., & Huss, H. H. (1996). Suitability of Lactococcus lactis subsp. lactis ATCC 11454 as a protective culture for lightly preserved fish products. Food Microbiology, 13(4), 323–332.

    Google Scholar 

  • WHO (1999). Food safety issues associated with products from aquaculture. Report of a Joint FAO/NACA/WHO Study Group. World Health Organization Technical Report Series, 883, 1–55.

    Google Scholar 

  • Yamazaki, K., Suzuki, M., Kawai, Y., Inoue, N., & Montville, T. J. (2003). Inhibition of Listeria monocytogenes in cold-smoked salmon by Carnobacterium piscicola CS526 isolated from frozen surimi. Journal of Food Protection, 66(8), 1420–1425.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the PGIDT Programa Sectorial de Tecnologías de la Alimentación (Project PGIDIT05TAL00701CT) from the Galician Government (Xunta de Galicia), Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Barros-Velazquez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calo-Mata, P., Arlindo, S., Boehme, K. et al. Current Applications and Future Trends of Lactic Acid Bacteria and their Bacteriocins for the Biopreservation of Aquatic Food Products. Food Bioprocess Technol 1, 43–63 (2008). https://doi.org/10.1007/s11947-007-0021-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-007-0021-2

Keywords

Navigation