Skip to main content

Advertisement

Log in

The future of gene therapy for stroke

  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

New diagnostic and treatment strategies are being developed for stroke. Gene therapy has several potential advantages over classical pharmacologic therapy. Direct administration of DNA into the brain offers the advantage of producing high concentrations of therapeutic agents in a relatively localized environment. Gene transfer also provides longer duration of effect than traditional drug therapy. Recent studies indicate that gene transfer can produce functional proteins in brain parenchyma and cerebral blood vessels after stroke. In animal models, gene transfer may reduce effects of cerebral ischemia or subarachnoid hemorrhage. This review summarizes some current methods of gene transfer to the brain and recent progress that may lead to gene therapy for stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Tsutsui M, Onoue H, Iida Y, et al.: Effects of recombinant eNOS gene expression on reactivity of small cerebral arteries. Am J Physiol Heart Circ Physiol 2000, 278:H420-H427.

    PubMed  CAS  Google Scholar 

  2. Toyoda K, Faraci FM, Russo AF, et al.: Gene transfer of calcitonin gene-related peptide to cerebral arteries. Am J Physiol Heart Circ Physiol 2000, 278:H586-H594.

    PubMed  CAS  Google Scholar 

  3. Khurana VG, Smith LA, Weiler DA, et al.: Adenovirus-mediated gene transfer to human cerebral arteries. J Cereb Blood Flow Metab 2000, 20:1360–1371. This is the first study to demonstrate gene transfer to human cerebral vessels.

    Article  PubMed  CAS  Google Scholar 

  4. Yang GY, Mao Y, Zhou LF, et al.: Attenuation of temporary focal cerebral ischemic injury in the mouse following transfection with interleukin-1 receptor antagonist. Brain Res Mol Brain Res 1999, 72:129–137. This paper demonstrates a protective effect of gene transfer of interleukin-1 receptor antagonist during cerebral ischemia.

    Article  PubMed  CAS  Google Scholar 

  5. Lund DD, Faraci FM, Ooboshi H, et al.: Adenovirus-mediated gene transfer is augmented in basilar and carotid arteries of heritable hyperlipidemic rabbits. Stroke 1999, 30:120–125.

    PubMed  CAS  Google Scholar 

  6. Bohn MC, Choi-Lundberg DL, Davidson BL, et al.: Adenovirusmediated transgene expression in nonhuman primate brain. Hum Gene Ther 1999, 10:1175–1184.

    Article  PubMed  CAS  Google Scholar 

  7. Christenson SD, Lake KD, Ooboshi H, et al.: Adenovirusmediated gene transfer in vivo to cerebral blood vessels and perivascular tissue in mice. Stroke 1998, 29:1411–1415.

    PubMed  CAS  Google Scholar 

  8. Kullo IJ, Mozes G, Schwartz RS, et al.: Enhanced endotheliumdependent relaxations after gene transfer of recombinant endothelial nitric oxide synthase to rabbit carotid arteries. Hypertension 1997, 30:314–320.

    PubMed  CAS  Google Scholar 

  9. Lawrence MS, McLaughlin JR, Sun GH, et al.: Herpes simplex viral vectors expressing Bcl-2 are neuroprotective when delivered after a stroke. J Cereb Blood Flow Metab 1997, 17:740–744.

    Article  PubMed  CAS  Google Scholar 

  10. Huang Q, Vonsattel JP, Schaffer PA, et al.: Introduction of a foreign gene (Escherichia coli lacZ) into rat neostriatal neurons using herpes simplex virus mutants: a light and electron microscopic study. Exp Neurol 1992, 115:303–316.

    Article  PubMed  CAS  Google Scholar 

  11. Bender MA, Gelinas RE, Miller AD: A majority of mice show long-term expression of a human beta-globin gene after retrovirus transfer into hematopoietic stem cells. Mol Cell Biol 1989, 9:1426–1434.

    PubMed  CAS  Google Scholar 

  12. Davidson BL, Stein CS, Heth JA, et al.: Recombinant adenoassociated virus type 2, 4, and 5 vectors: transduction of variant cell types and regions in the mammalian central nervous system. Proc Natl Acad Sci U S A 2000, 97:3428–3432.

    Article  PubMed  CAS  Google Scholar 

  13. Alisky JM, Hughes SM, Sauter SL, et al.: Transduction of murine cerebellar neurons with recombinant FIV and AAV5 vectors. Neuroreport 2000, 11:2669–2673.

    Article  PubMed  CAS  Google Scholar 

  14. Duan D, Yue Y, Yan Z, et al.: A new dual-vector approach to enhance recombinant adeno-associated virus-mediated gene expression through intermolecular cis activation. Nat Med 2000, 6:595–598.

    Article  PubMed  CAS  Google Scholar 

  15. Parks RJ, Bramson JL: Adenoviral vectors: prospects for gene delivery to the central nervous system. Gene Ther 1999, 6:1349–1350.

    Article  PubMed  CAS  Google Scholar 

  16. Lawrence MS, Foellmer HG, Elsworth JD, et al.: Inflammatory responses and their impact on beta-galactosidase transgene expression following adenovirus vector delivery to the primate caudate nucleus. Gene Ther 1999, 6:1368–1379.

    Article  PubMed  CAS  Google Scholar 

  17. Schiedner G, Morral N, Parks RJ, et al.: Genomic DNA transfer with a high-capacity adenovirus vector results in improved in vivo gene expression and decreased toxicity. Nat Genet 1998, 18:180–183. This paper describes the novel use of “gutted” or helper-dependent adenoviral vectors to minimize inflammatory responses.

    Article  PubMed  CAS  Google Scholar 

  18. Toyoda K, Andresen JJ, Zabner J, et al.: Calcium phosphate precipitates augment adenovirus-mediated gene transfer to blood vessels in vitro and in vivo. Gene Ther 2000, 7:1284–1291.

    Article  PubMed  CAS  Google Scholar 

  19. Yang K, Clifton GL, Hayes RL: Gene therapy for central nervous system injury: the use of cationic liposomes: an invited review. J Neurotrauma 1997, 14:281–297.

    Article  PubMed  CAS  Google Scholar 

  20. Felgner PL: Improvements in cationic liposomes for in vivo gene transfer. Hum Gene Ther 1996, 7:1791–1793.

    PubMed  CAS  Google Scholar 

  21. Peng KW, Russell SJ: Viral vector targeting. Curr Opin Biotechnol 1999, 10:454–457.

    Article  PubMed  CAS  Google Scholar 

  22. Wickham TJ: Targeting adenovirus. Gene Ther 2000, 7:110–114.

    Article  PubMed  CAS  Google Scholar 

  23. Zoldhelyi P, McNatt J, Shelat HS, et al.: Thromboresistance of balloon-injured porcine carotid arteries after local gene transfer of human tissue factor pathway inhibitor. Circulation 2000, 101:289–295.

    PubMed  CAS  Google Scholar 

  24. Nishida T, Ueno H, Atsuchi N, et al.: Adenovirus-mediated local expression of human tissue factor pathway inhibitor eliminates shear stress-induced recurrent thrombosis in the injured carotid artery of the rabbit. Circ Res 1999, 84:1446–1452.

    PubMed  CAS  Google Scholar 

  25. Mozes G, Mohacsi T, Gloviczki P, et al.: Adenovirus-mediated gene transfer of macrophage colony stimulating factor to the arterial wall in vivo. Arterioscler Thromb Vasc Biol 1998, 18:1157–1163.

    PubMed  CAS  Google Scholar 

  26. Channon KM, Qian H, Neplioueva V, et al.: In vivo gene transfer of nitric oxide synthase enhances vasomotor function in carotid arteries from normal and cholesterolfed rabbits. Circulation 1998, 98:1905–1911.

    PubMed  CAS  Google Scholar 

  27. Ueno H, Yamamoto H, Ito S, et al.: Adenovirus-mediated transfer of a dominant-negative H-ras suppresses neointimal formation in balloon-injured arteries in vivo. Arterioscler Thromb Vasc Biol 1997, 17:898–904.

    PubMed  CAS  Google Scholar 

  28. Sato J, Mohacsi T, Noel A, et al.: In vivo gene transfer of endothelial nitric oxide synthase to carotid arteries from hypercholesterolemic rabbits enhances endotheliumdependent relaxations. Stroke 2000, 31:968–975.

    PubMed  CAS  Google Scholar 

  29. Lund DD, Faraci FM, Miller FJ Jr, et al.: Gene transfer of endothelial nitric oxide synthase improves relaxation of carotid arteries from diabetic rabbits. Circulation 2000, 101:1027–1033.

    PubMed  CAS  Google Scholar 

  30. Kibbe M, Billiar T, Tzeng E: Nitric oxide synthase gene transfer to the vessel wall. Curr Opin Nephrol Hypertens 1999, 8:75–81.

    Article  PubMed  CAS  Google Scholar 

  31. Chen AF, O‘Brien T, Tsutsui M, et al.: Expression and function of recombinant endothelial nitric oxide synthase gene in canine basilar artery. Circ Res 1997, 80:327–335. This study demonstrates that gene transfer can alter the function of an intracranial artery.

    PubMed  CAS  Google Scholar 

  32. Rios CD, Ooboshi H, Piegors D, et al.: Adenovirus-mediated gene transfer to normal and atherosclerotic arteries. A novel approach. Arterioscler Thromb Vasc Biol 1995, 15:2241–2245.

    PubMed  CAS  Google Scholar 

  33. Ooboshi H, Welsh MJ, Rios CD, et al.: Adenovirus-mediated gene transfer in vivo to cerebral blood vessels and perivascular tissue. Circ Res 1995, 77:7–13. This paper reports gene transfer to cerebral blood vessels in vivo.

    PubMed  CAS  Google Scholar 

  34. Muhonen MG, Ooboshi H, Welsh MJ, et al.: Gene transfer to cerebral blood vessels after subarachnoid hemorrhage. Stroke 1997, 28:822–828.

    PubMed  CAS  Google Scholar 

  35. Ooboshi H, Ibayashi S, Heistad DD, et al.: Adenovirusmediated gene transfer to cerebral circulation. Mech Ageing Dev 2000, 116:95–101.

    Article  PubMed  CAS  Google Scholar 

  36. Driesse MJ, Kros JM, Avezaat CJ, et al.: Distribution of recombinant adenovirus in the cerebrospinal fluid of nonhuman primates. Hum Gene Ther 1999, 10:2347–2354.

    Article  PubMed  CAS  Google Scholar 

  37. Lin KF, Chao J, Chao L: Atrial natriuretic peptide gene delivery reduces stroke-induced mortality rate in Dahl salt-sensitive rats. Hypertension 1999, 33:219–224.

    PubMed  CAS  Google Scholar 

  38. Zhang JJ, Chao L, Chao J: Adenovirus-mediated kallikrein gene delivery reduces aortic thickening and stroke-induced death rate in Dahl salt-sensitive rats. Stroke 1999, 30:1925–1931.

    PubMed  CAS  Google Scholar 

  39. Abe K, Setoguchi Y, Hayashi T, et al.: In vivo adenovirusmediated gene transfer and the expression in ischemic and reperfused rat brain. Brain Res 1997, 763:191–201.

    Article  PubMed  CAS  Google Scholar 

  40. BetzAL, Yang GY, Davidson BL: Attenuation of stroke size in rats using an adenoviral vector to induce overexpression of interleukin-1 receptor antagonist in brain. J Cereb Blood Flow Metab 1995, 15:547–551. This study demonstrates that gene transfer can be used to attenuate brain injury.

    Google Scholar 

  41. Kitagawa H, Sasaki C, Sakai K, et al.: Adenovirus-mediated gene transfer of glial cell line-derived neurotrophic factor prevents ischemic brain injury after transient middle cerebral artery occlusion in rats. J Cereb Blood Flow Metab 1999, 19:1336–1344. This paper reports that administration of neurotrophic factor by gene transfer before transient ischemia reduces ischemic brain injury.

    Article  PubMed  CAS  Google Scholar 

  42. Raymond J, Desfaits AC, Roy D: Fibrinogen and vascular smooth muscle cell grafts promote healing of experimental aneurysms treated by embolization. Stroke 1999, 30:1657–1664.

    PubMed  CAS  Google Scholar 

  43. Kimura H, Sakata Y, Hamada H, et al.: In vivo retention of endothelial cells adenovirally transduced with tissue-type plasminogen activator and seeded onto expanded polytetrafluoroethylene. J Vasc Surg 2000, 32:353–363.

    Article  PubMed  CAS  Google Scholar 

  44. Toyoda K, Faraci FM, Watanabe J, et al.: Gene transfer of CGRP prevents vasoconstriction after subarachnoid hemorrhage. Circ Res 2000, 87:818–824. This paper, which provides evidence that gene therapy may be useful after SAH, is accompanied by an editorial referring to “a new era for cardiovascular gene therapy”.

    PubMed  CAS  Google Scholar 

  45. Sobey CG, Quan L: Impaired cerebral vasodilator responses to NO and PDE V inhibition after subarachnoid hemorrhage. Am J Physiol 1999, 277:H1718-H1724.

    PubMed  CAS  Google Scholar 

  46. Stoodley M, Weihl CC, Zhang ZD, et al.: Effect of adenovirusmediated nitric oxide synthase gene transfer on vasospasm after experimental subarachnoid hemorrhage. Neurosurgery 2000, 46:1193–1202.

    Article  PubMed  CAS  Google Scholar 

  47. Onoue H, Tsutsui M, Smith L, et al.: Expression and function of recombinant endothelial nitric oxide synthase gene in canine basilar artery after experimental subarachnoid hemorrhage. Stroke 1998, 29:1959–1965.

    PubMed  CAS  Google Scholar 

  48. Ay H, Ay I, Koroshetz WJ, et al.: Potential usefulness of basic fibroblast growth factor as a treatment for stroke. Cerebrovasc Dis 1999, 9:131–135.

    Article  PubMed  CAS  Google Scholar 

  49. Hayashi T, Abe K, Itoyama Y: Reduction of ischemic damage by application of vascular endothelial growth factor in rat brain after transient ischemia. J Cereb Blood Flow Metab 1998, 18:887–895. This paper demonstrates the potential for therapeutic intervention using gene transfer after ischemia.

    Article  PubMed  CAS  Google Scholar 

  50. Yenari MA, Fink SL, Sun GH, et al.: Gene therapy with HSP72 is neuroprotective in rat models of stroke and epilepsy. Ann Neurol 1998, 44:584–591.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gunnett, C.A., Heistad, D.D. The future of gene therapy for stroke. Current Science Inc 3, 36–40 (2001). https://doi.org/10.1007/s11906-001-0076-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-001-0076-9

Keywords

Navigation