Skip to main content

Advertisement

Log in

The CXCR1/2 Pathway: Involvement in Diabetes Pathophysiology and Potential Target for T1D Interventions

  • Immunology and Transplantation (A Pileggi, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Although numerous chemokine/chemokine receptor pathways have been described to be implicated in the pathogenesis of type 1 diabetes (T1D), the CXCR1/2 axis has recently been proved to be crucial for leucocyte recruitment involved in insulitis and β cell damage. Multiple strategies blocking the CXCR1/2 pathway are available such as neutralizing antibodies, small molecules and peptide-derived inhibitors. They were firstly and widely used in cancer thanks to their anti-tumorigenic activity and only recently they were tested as a new interventional approach for T1D. As well, CXCR1/2 inhibition has been demonstrated to prevent inflammation- and autoimmunity-mediated damage of the pancreatic islets through inhibiting the migration of CXCR1/2-expressing cells. Among them, neutrophils, macrophages, and, although to a smaller extent, lymphoid cells are the main CXCR1/2-expressing cells. These results supported the active role of the innate immunity in the autoimmune process and opened new interventional approaches for the management of T1D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Peakman M. Immunological pathways to beta-cell damage in type 1 diabetes. Diabet Med. 2013;30(2):147–54.

    Article  CAS  PubMed  Google Scholar 

  2. Lehuen A et al. Immune cell crosstalk in type 1 diabetes. Nat Rev Immunol. 2010;10(7):501–13.

    Article  CAS  PubMed  Google Scholar 

  3. Turley S et al. Physiological β cell death triggers priming of self-reactive T cells by dendritic cells in a type-1 diabetes model. J Exp Med. 2003;198(10):1527–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Valle A et al. Reduction of circulating neutrophils precedes and accompanies type 1 diabetes. Diabetes. 2013;62(6):2072–7. This paper is the first clinical evidence about the presence of neutrophils in the pancreas of patients affected by T1D.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Harsunen MH et al. Reduced blood leukocyte and neutrophil numbers in the pathogenesis of type 1 diabetes. Horm Metab Res. 2013;45(6):467–70.

    Article  CAS  PubMed  Google Scholar 

  6. Schneider DA, Kretowicz AM, von Herrath MG. Emerging immune therapies in type 1 diabetes and pancreatic islet transplantation. Diabetes Obes Metab. 2013;15(7):581–92.

    Article  CAS  PubMed  Google Scholar 

  7. Chatenoud L et al. Anti-CD3 antibody induces long-term remission of overt autoimmunity in nonobese diabetic mice. Proc Natl Acad Sci U S A. 1994;91(1):123–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Barlow AK, Like AA. Anti-CD2 monoclonal antibodies prevent spontaneous and adoptive transfer of diabetes in the BB/Wor rat. Am J Pathol. 1992;141(5):1043–51.

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Like AA et al. Spontaneous diabetes mellitus: reversal and prevention in the BB/W rat with antiserum to rat lymphocytes. Science. 1979;206(4425):1421–3.

    Article  CAS  PubMed  Google Scholar 

  10. Grinberg-Bleyer Y et al. IL-2 reverses established type 1 diabetes in NOD mice by a local effect on pancreatic regulatory T cells. J Exp Med. 2010;207(9):1871–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Sumpter KM et al. Preliminary studies related to anti-interleukin-1beta therapy in children with newly diagnosed type 1 diabetes. Pediatr Diabetes. 2011;12(7):656–67.

    Article  CAS  PubMed  Google Scholar 

  12. Mastrandrea L et al. Etanercept treatment in children with new-onset type 1 diabetes: pilot randomized, placebo-controlled, double-blind study. Diabetes Care. 2009;32(7):1244–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Buzzetti R et al. C-peptide response and HLA genotypes in subjects with recent-onset type 1 diabetes after immunotherapy with DiaPep277: an exploratory study. Diabetes. 2011;60(11):3067–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Lozanoska-Ochser B et al. Atorvastatin fails to prevent the development of autoimmune diabetes despite inhibition of pathogenic beta-cell-specific CD8 T-cells. Diabetes. 2006;55(4):1004–10.

    Article  CAS  PubMed  Google Scholar 

  15. Xue S et al. Exendin-4 treatment of nonobese diabetic mice increases beta-cell proliferation and fractional insulin reactive area. J Diabetes Complicat. 2010;24(3):163–7.

    Article  PubMed  Google Scholar 

  16. Ding L et al. Combining MK626, a novel DPP-4 inhibitor, and low-dose monoclonal CD3 antibody for stable remission of new-onset diabetes in mice. PLoS One. 2014;9(9):e107935.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Citro A, Cantarelli E, Piemonti L. Anti-inflammatory strategies to enhance islet engraftment and survival. Curr Diab Rep. 2013;13(5):733–44.

    Article  CAS  PubMed  Google Scholar 

  18. Melzi R et al. Role of CCL2/MCP-1 in islet transplantation. Cell Transplant. 2010;19(8):1031–46.

    Article  PubMed  Google Scholar 

  19. Murphy PM. Neutrophil receptors for interleukin-8 and related CXC chemokines. Semin Hematol. 1997;34(4):311–8.

    CAS  PubMed  Google Scholar 

  20. Lee J et al. Characterization of two high affinity human interleukin-8 receptors. J Biol Chem. 1992;267(23):16283–7.

    CAS  PubMed  Google Scholar 

  21. Loetscher P et al. Both interleukin-8 receptors independently mediate chemotaxis. Jurkat cells transfected with IL-8R1 or IL-8R2 migrate in response to IL-8, GRO alpha and NAP-2. FEBS Lett. 1994;341(2-3):187–92.

    Article  CAS  PubMed  Google Scholar 

  22. Kelvin DJ et al. Chemokines and serpentines: the molecular biology of chemokine receptors. J Leukoc Biol. 1993;54(6):604–12.

    CAS  PubMed  Google Scholar 

  23. Shuster DE, Kehrli Jr ME, Ackermann MR. Neutrophilia in mice that lack the murine IL-8 receptor homolog. Science. 1995;269(5230):1590–1.

    Article  CAS  PubMed  Google Scholar 

  24. Davatelis G et al. Cloning and characterization of a cDNA for murine macrophage inflammatory protein (MIP), a novel monokine with inflammatory and chemokinetic properties. J Exp Med. 1988;167(6):1939–44.

    Article  CAS  PubMed  Google Scholar 

  25. Oquendo P et al. The platelet-derived growth factor-inducible KC gene encodes a secretory protein related to platelet alpha-granule proteins. J Biol Chem. 1989;264(7):4133–7.

    CAS  PubMed  Google Scholar 

  26. Lee J et al. Chemokine binding and activities mediated by the mouse IL-8 receptor. J Immunol. 1995;155(4):2158–64.

    CAS  PubMed  Google Scholar 

  27. Murphy PM. The molecular biology of leukocyte chemoattractant receptors. Annu Rev Immunol. 1994;12:593–633.

    Article  CAS  PubMed  Google Scholar 

  28. Hoffmann E et al. Multiple control of interleukin-8 gene expression. J Leukoc Biol. 2002;72(5):847–55.

    CAS  PubMed  Google Scholar 

  29. Zaslaver A, Feniger-Barish R, Ben-Baruch A. Actin filaments are involved in the regulation of trafficking of two closely related chemokine receptors, CXCR1 and CXCR2. J Immunol. 2001;166(2):1272–84.

    Article  CAS  PubMed  Google Scholar 

  30. Balkwill F. Cancer and the chemokine network. Nat Rev Cancer. 2004;4(7):540–50.

    Article  CAS  PubMed  Google Scholar 

  31. Dwyer MP, Yu Y. CXCR2 receptor antagonists: a medicinal chemistry perspective. Curr Top Med Chem. 2014;14(13):1590–605.

    Article  CAS  PubMed  Google Scholar 

  32. Pruenster M et al. The Duffy antigen receptor for chemokines transports chemokines and supports their promigratory activity. Nat Immunol. 2009;10(1):101–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Sanz MJ, Kubes P. Neutrophil-active chemokines in in vivo imaging of neutrophil trafficking. Eur J Immunol. 2012;42(2):278–83.

    Article  CAS  PubMed  Google Scholar 

  34. Nourshargh S, Alon R. Leukocyte migration into inflamed tissues. Immunity. 2014;41(5):694–707.

    Article  CAS  PubMed  Google Scholar 

  35. Eltzschig HK, Eckle T. Ischemia and reperfusion–from mechanism to translation. Nat Med. 2011;17(11):1391–401.

    Article  CAS  PubMed  Google Scholar 

  36. de Boer WI et al. Monocyte chemoattractant protein 1, interleukin 8, and chronic airways inflammation in COPD. J Pathol. 2000;190(5):619–26.

    Article  PubMed  Google Scholar 

  37. Clunes MT, Boucher RC. Cystic fibrosis: the mechanisms of pathogenesis of an inherited lung disorder. Drug Discov Today Dis Mech. 2007;4(2):63–72.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Seitz M et al. Enhanced production of neutrophil-activating peptide-1/interleukin-8 in rheumatoid arthritis. J Clin Invest. 1991;87(2):463–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Citro A et al. CXCR1/2 inhibition enhances pancreatic islet survival after transplantation. J Clin Invest. 2012;122(10):3647–51. This study provides for the first time that CXCR1/2 pathway is a master regulator of islet damage and should be a target for intervention to improve the islet survival after transplantation.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Cugini D et al. Inhibition of the chemokine receptor CXCR2 prevents kidney graft function deterioration due to ischemia//reperfusion. Kidney Int. 2005;67(5):1753–61.

    Article  CAS  PubMed  Google Scholar 

  41. Liehn EA et al. Compartmentalized protective and detrimental effects of endogenous macrophage migration-inhibitory factor mediated by CXCR2 in a mouse model of myocardial ischemia/reperfusion. Arterioscler Thromb Vasc Biol. 2013;33(9):2180–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Belperio JA et al. CXCR2/CXCR2 ligand biology during lung transplant ischemia-reperfusion injury. J Immunol. 2005;175(10):6931–9.

    Article  CAS  PubMed  Google Scholar 

  43. de Boer WI. Cytokines and therapy in copd*: a promising combination? Chest. 2002;121(5_suppl):209S–18S.

    Article  PubMed  Google Scholar 

  44. Qiu Y et al. Biopsy neutrophilia, neutrophil chemokine and receptor gene expression in severe exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2003;168(8):968–75.

    Article  PubMed  Google Scholar 

  45. Ritzman AM et al. The chemokine receptor CXCR2 ligand KC (CXCL1) mediates neutrophil recruitment and is critical for development of experimental Lyme arthritis and carditis. Infect Immun. 2010;78(11):4593–600.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Citro A et al. CXCR1/2 inhibition blocks and reverses type 1 diabetes in mice. Diabetes. 2015;64(4):1329–40. This study underlines the relevance of targeting CXCR1/2 pathway in a preclinical model of T1D showing the possibility to block or temporary revert the disease.

    Article  CAS  PubMed  Google Scholar 

  47. Negi S et al. Analysis of beta-cell gene expression reveals inflammatory signaling and evidence of dedifferentiation following human islet isolation and culture. PLoS One. 2012;7(1):e30415.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Erbagci AB et al. Mediators of inflammation in children with type I diabetes mellitus: cytokines in type I diabetic children. Clin Biochem. 2001;34(8):645–50.

    Article  CAS  PubMed  Google Scholar 

  49. Takahashi K et al. Serum CXCL1 concentrations are elevated in type 1 diabetes mellitus, possibly reflecting activity of anti-islet autoimmune activity. Diabetes Metab Res Rev. 2011;27(8):830–3.

    Article  CAS  PubMed  Google Scholar 

  50. Omatsu T et al. CXCL1/CXCL8 (GROalpha/IL-8) in human diabetic ketoacidosis plasma facilitates leukocyte recruitment to cerebrovascular endothelium in vitro. Am J Physiol Endocrinol Metab. 2014;306(9):E1077–84.

    Article  CAS  PubMed  Google Scholar 

  51. Planas R et al. Reg (regenerating) gene overexpression in islets from non-obese diabetic mice with accelerated diabetes: role of IFNbeta. Diabetologia. 2006;49(10):2379–87.

    Article  CAS  PubMed  Google Scholar 

  52. Diana J, Lehuen A. Macrophages and beta-cells are responsible for CXCR2-mediated neutrophil infiltration of the pancreas during autoimmune diabetes. EMBO Mol Med. 2014;6(8):1090–104. The authors suggest the relevance of macrophages and CXCR2-positive neutrophils in the early stage of the pathophysiology of T1D.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Diana J et al. Crosstalk between neutrophils, B-1a cells and plasmacytoid dendritic cells initiates autoimmune diabetes. Nat Med. 2013;19(1):65–73. This study provides an innovative description of the potential crosstalk between the innate and adaptive response during the progression in a preclinical model of T1D.

    Article  CAS  PubMed  Google Scholar 

  54. Campbell LM, Maxwell PJ, Waugh DJ. Rationale and means to target pro-inflammatory interleukin-8 (CXCL8) signaling in cancer. Pharmaceuticals (Basel). 2013;6(8):929–59.

    Article  Google Scholar 

  55. Singh S et al. CXCR1 and CXCR2 silencing modulates CXCL8-dependent endothelial cell proliferation, migration and capillary-like structure formation. Microvasc Res. 2011;82(3):318–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Schraufstatter IU, Chung J, Burger M. IL-8 activates endothelial cell CXCR1 and CXCR2 through Rho and Rac signaling pathways. Am J Physiol Lung Cell Mol Physiol. 2001;280(6):L1094–103.

    CAS  PubMed  Google Scholar 

  57. Sanchez J et al. The role of CXCR2 in systemic neovascularization of the mouse lung. J Appl Physiol (1985). 2007;103(2):594–9.

    Article  CAS  Google Scholar 

  58. Matsuo Y et al. CXC-chemokine/CXCR2 biological axis promotes angiogenesis in vitro and in vivo in pancreatic cancer. Int J Cancer. 2009;125(5):1027–37.

    Article  CAS  PubMed  Google Scholar 

  59. Bizzarri C et al. ELR+ CXC chemokines and their receptors (CXC chemokine receptor 1 and CXC chemokine receptor 2) as new therapeutic targets. Pharmacol Ther. 2006;112(1):139–49.

    Article  CAS  PubMed  Google Scholar 

  60. Ginestier C et al. CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J Clin Invest. 2010;120(2):485–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. White JR et al. Identification of a potent, selective non-peptide CXCR2 antagonist that inhibits interleukin-8-induced neutrophil migration. J Biol Chem. 1998;273(17):10095–8.

    Article  CAS  PubMed  Google Scholar 

  62. Jin Q et al. Discovery of potent and orally bioavailable N, N’-diarylurea antagonists for the CXCR2 chemokine receptor. Bioorg Med Chem Lett. 2004;14(17):4375–8.

    Article  CAS  PubMed  Google Scholar 

  63. Bento AF et al. The selective nonpeptide CXCR2 antagonist SB225002 ameliorates acute experimental colitis in mice. J Leukoc Biol. 2008;84(4):1213–21.

    Article  CAS  PubMed  Google Scholar 

  64. Dwyer MP et al. Discovery of 2-hydroxy-N, N-dimethyl-3-{2-[[(R)-1-(5-methylfuran-2-yl)propyl]amino]-3,4-dioxocyclobut-1-enylamino}benzamide (SCH 527123): a potent, orally bioavailable CXCR2/CXCR1 receptor antagonist. J Med Chem. 2006;49(26):7603–6.

    Article  CAS  PubMed  Google Scholar 

  65. Moss RB et al. Safety and early treatment effects of the CXCR2 antagonist SB-656933 in patients with cystic fibrosis. J Cyst Fibros. 2013;12(3):241–8.

    Article  CAS  PubMed  Google Scholar 

  66. Salchow K et al. A common intracellular allosteric binding site for antagonists of the CXCR2 receptor. Br J Pharmacol. 2010;159(7):1429–39.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Gonsiorek W et al. Pharmacological characterization of Sch527123, a potent allosteric CXCR1/CXCR2 antagonist. J Pharmacol Exp Ther. 2007;322(2):477–85.

    Article  CAS  PubMed  Google Scholar 

  68. Ning Y et al. The CXCR2 antagonist, SCH-527123, shows antitumor activity and sensitizes cells to oxaliplatin in preclinical colon cancer models. Mol Cancer Ther. 2012;11(6):1353–64.

    Article  CAS  PubMed  Google Scholar 

  69. Varney ML et al. Small molecule antagonists for CXCR2 and CXCR1 inhibit human colon cancer liver metastases. Cancer Lett. 2011;300(2):180–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Holz O et al. SCH527123, a novel CXCR2 antagonist, inhibits ozone-induced neutrophilia in healthy subjects. Eur Respir J. 2010;35(3):564–70.

    Article  CAS  PubMed  Google Scholar 

  71. Virtala R et al. Airway inflammation evaluated in a human nasal lipopolysaccharide challenge model by investigating the effect of a CXCR2 inhibitor. Clin Exp Allergy. 2012;42(4):590–6.

    Article  CAS  PubMed  Google Scholar 

  72. O’Callaghan K, Kuliopulos A, Covic L. Turning receptors on and off with intracellular pepducins: new insights into G-protein-coupled receptor drug development. J Biol Chem. 2012;287(16):12787–96.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Kaneider NC et al. Reversing systemic inflammatory response syndrome with chemokine receptor pepducins. Nat Med. 2005;11(6):661–5.

    Article  CAS  PubMed  Google Scholar 

  74. Dimond P et al. G protein-coupled receptor modulation with pepducins: moving closer to the clinic. Ann N Y Acad Sci. 2011;1226:34–49.

    Article  PubMed  Google Scholar 

  75. Jamieson T et al. Inhibition of CXCR2 profoundly suppresses inflammation-driven and spontaneous tumorigenesis. J Clin Invest. 2012;122(9):3127–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Antonio Citro and Elisa Cantarelli declare that they have no conflict of interest. Lorenzo Piemonti reports grants and personal fees from Dompè S.P.A. He has a patent on inhibitors of CXCR1/2 as adjuvants in the transplant of pancreatic islets licensed 14 April 2011.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Citro.

Additional information

This article is part of the Topical Collection on Immunology and Transplantation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Citro, A., Cantarelli, E. & Piemonti, L. The CXCR1/2 Pathway: Involvement in Diabetes Pathophysiology and Potential Target for T1D Interventions. Curr Diab Rep 15, 68 (2015). https://doi.org/10.1007/s11892-015-0638-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-015-0638-x

Keywords

Navigation