Skip to main content
Log in

Bispecific Antibodies for Autoimmune and Inflammatory Diseases: Clinical Progress to Date

  • Leading Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

In autoimmune diseases, a highly complex network comprising diverse cytokines and their receptors on immune cells drives the inflammatory response. A number of therapeutic antibodies targeting these disease-related molecules have been approved for the treatment of autoimmune diseases. Bispecific antibodies (bsAbs), with binding specificity for two different target molecules, have recently been developed for a range of autoimmune diseases, such as rheumatoid arthritis, systemic lupus erythematosus, and psoriasis, and tested in clinical trials. This review briefly describes the three main categories of bsAb structures developed for autoimmune diseases, including immunoglobulin G (IgG)-like, natural IgG, and tandem antibody fragment formats. The bsAbs developed and evaluated to date mainly target the depletion of T or B cells, the inhibition of T cell differentiation or activation, or the neutralization of proinflammatory cytokines. The clinical evaluation of bsAbs in autoimmune diseases is ongoing, with both successes (phase II trials of obexelimab in systemic lupus erythematosus) and failures (phase II trials of lutikizumab in osteoarthritis and romilkimab in idiopathic pulmonary fibrosis), and this review aims to provide a comprehensive, up-to-date summary of the clinical progress of bsAbs in this therapeutic area. Although many challenges remain, bsAbs offer new therapeutic options in the future direction of autoimmune disease treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bragazzi NL, Watad A, Brigo F, Adawi M, Amital H, Shoenfeld Y. Public health awareness of autoimmune diseases after the death of a celebrity. Clin Rheumatol. 2017;36(8):1911–7. https://doi.org/10.1007/s10067-016-3513-5.

    Article  PubMed  Google Scholar 

  2. Wang L, Wang FS, Gershwin ME. Human autoimmune diseases: a comprehensive update. J Intern Med. 2015;278(4):369–95. https://doi.org/10.1111/joim.12395.

    Article  CAS  PubMed  Google Scholar 

  3. Rosman Z, Shoenfeld Y, Zandman-Goddard G. Biologic therapy for autoimmune diseases: an update. BMC Med. 2013;11:88. https://doi.org/10.1186/1741-7015-11-88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kotsovilis S, Andreakos E. Therapeutic human monoclonal antibodies in inflammatory diseases. Methods Mol Biol. 2014;1060:37–59. https://doi.org/10.1007/978-1-62703-586-6_3.

    Article  CAS  PubMed  Google Scholar 

  5. Hafeez U, Gan HK, Scott AM. Monoclonal antibodies as immunomodulatory therapy against cancer and autoimmune diseases. Curr Opin Pharmacol. 2018;41:114–21. https://doi.org/10.1016/j.coph.2018.05.010.

    Article  CAS  PubMed  Google Scholar 

  6. Li P, Zheng Y, Chen X. Drugs for autoimmune inflammatory diseases: from small molecule compounds to anti-TNF biologics. Front Pharmacol. 2017;8:460. https://doi.org/10.3389/fphar.2017.00460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rubbert-Roth A, Finckh A. Treatment options in patients with rheumatoid arthritis failing initial TNF inhibitor therapy: a critical review. Arthritis Res Ther. 2009;11(Suppl 1):S1. https://doi.org/10.1186/ar2666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Roda G, Jharap B, Neeraj N, Colombel JF. Loss of response to anti-TNFs: definition, epidemiology, and management. Clin Transl Gastroenterol. 2016;7:e135. https://doi.org/10.1038/ctg.2015.63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schett G, Elewaut D, McInnes IB, Dayer JM, Neurath MF. How cytokine networks fuel inflammation: toward a cytokine-based disease taxonomy. Nat Med. 2013;19(7):822–4. https://doi.org/10.1038/nm.3260.

    Article  CAS  PubMed  Google Scholar 

  10. Filpula D. Antibody engineering and modification technologies. Biomol Eng. 2007;24(2):201–15. https://doi.org/10.1016/j.bioeng.2007.03.004.

    Article  CAS  PubMed  Google Scholar 

  11. Fournier P, Schirrmacher V. Bispecific antibodies and trispecific immunocytokines for targeting the immune system against cancer: preparing for the future. BioDrugs Clin Immunother Biopharm Gene Ther. 2013;27(1):35–53. https://doi.org/10.1007/s40259-012-0008-z.

    Article  CAS  Google Scholar 

  12. Husain B, Ellerman D. Expanding the boundaries of biotherapeutics with bispecific antibodies. BioDrugs Clin Immunother Biopharm Gene Ther. 2018;32(5):441–64. https://doi.org/10.1007/s40259-018-0299-9.

    Article  Google Scholar 

  13. Chen Z, Wang L, Xu T, Wang Q, Kang L, Zhao Q. Generation of bispecific antibodies by Fc heterodimerization and their application. Curr Pharm Biotechnol. 2016;17(15):1324–32. https://doi.org/10.2174/1389201017666161018150553.

    Article  CAS  PubMed  Google Scholar 

  14. Mullard A. Bispecific antibody pipeline moves beyond oncology. Nat Rev Drug Discov. 2017;16(10):666–8. https://doi.org/10.1038/nrd.2017.187.

    Article  CAS  PubMed  Google Scholar 

  15. Chen Z, Wang L, Xu T, Wang Q, Kang L, Zhao Q. Generation of bispecific antibodies by Fc heterodimerization and their application. Curr Pharm Biotechnol. 2016;17:1324–32.

    Article  CAS  PubMed  Google Scholar 

  16. Kontermann RE, Brinkmann U. Bispecific antibodies. Drug Discov Today. 2015;20(7):838–47. https://doi.org/10.1016/j.drudis.2015.02.008.

    Article  CAS  PubMed  Google Scholar 

  17. Wang SX, Abramson SB, Attur M, Karsdal MA, Preston RA, Lozada CJ, et al. Safety, tolerability, and pharmacodynamics of an anti-interleukin-1alpha/beta dual variable domain immunoglobulin in patients with osteoarthritis of the knee: a randomized phase 1 study. Osteoarthr Cartil. 2017;25(12):1952–61. https://doi.org/10.1016/j.joca.2017.09.007.

    Article  CAS  Google Scholar 

  18. Kloppenburg M, Peterfy C, Haugen IK, Kroon F, Chen S, Wang L, et al. Phase IIa, placebo-controlled, randomised study of lutikizumab, an anti-interleukin-1alpha and anti- interleukin-1beta dual variable domain immunoglobulin, in patients with erosive hand osteoarthritis. Ann Rheum Dis. 2019;78(3):413–20. https://doi.org/10.1136/annrheumdis-2018-213336.

    Article  CAS  PubMed  Google Scholar 

  19. Fleischmann RM, Bliddal H, Blanco FJ, Schnitzer TJ, Peterfy C, Chen S, et al. A phase II trial of lutikizumab, an anti-interleukin-1alpha/beta dual variable domain immunoglobulin, in knee osteoarthritis patients with synovitis. Arthritis Rheumatol. 2019;71(7):1056–69. https://doi.org/10.1002/art.40840.

    Article  CAS  PubMed  Google Scholar 

  20. Fleischmann R, Bliddal H, Blanco F, Schnitzer T, Peterfy C, Chen S, et al. Safety and efficacy of ABT-981, an anti-interleukin-1α/β dual variable domain (DVD) immunoglobulin, in subjects with knee osteoarthritis: results from the randomized, double-blind, placebo-controlled, parallel-group phase 2 trial [abstract]. Arthritis Rheumatol. 2017;69(suppl 10):1196.

    Google Scholar 

  21. Pellerin L, Chen P, Gregori S, Hernandez-Hoyos G, Bacchetta R, Roncarolo MG. APVO210: a bispecific anti-CD86-IL-10 fusion protein (ADAPTIR) to induce antigen-specific T regulatory type 1 cells. Front Immunol. 2018;9:881. https://doi.org/10.3389/fimmu.2018.00881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. ​Bloomberg. https://www.bloomberg.com/press-releases/2019-10-03/aptevo-therapeutics-provides-corporate-and-pipeline-update. Accessed 6 Jan 2020.

  23. Szili D, Cserhalmi M, Banko Z, Nagy G, Szymkowski DE, Sarmay G. Suppression of innate and adaptive B cell activation pathways by antibody coengagement of FcgammaRIIb and CD19. MAbs. 2014;6(4):991–9. https://doi.org/10.4161/mabs.28841.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Merrill JT, June J, Koumpouras F, Machua W, Khan MF, Askanase A, Khosroshahi A, Sheikh S, Foster PA, Zack DJ. Top-line results of a phase 2, double-blind, randomized, placebo-controlled study of a reversible b cell inhibitor, XmAb®5871, in systemic lupus erythematosus (SLE) [abstract]. Arthritis Rheumatoly. 2018;70(suppl 10):L14.

    Google Scholar 

  25. Stone JH, Wallace ZS, Perugino CA, Fernandes AD, Foster PA, Zack DJ. A Trial of XmAb®5871, a Reversible Inhibitor of CD19 + Cells, in IgG4-related disease [abstract]. Arthritis Rheumatol. 2016;68(suppl 10):940.

    Google Scholar 

  26. Staton TL, Peng K, Owen R, Choy DF, Cabanski CR, Fong A, et al. A phase I, randomized, observer-blinded, single and multiple ascending-dose study to investigate the safety, pharmacokinetics, and immunogenicity of BITS7201A, a bispecific antibody targeting IL-13 and IL-17, in healthy volunteers. BMC Pulm Med. 2019;19(1):5. https://doi.org/10.1186/s12890-018-0763-9.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Silacci M, Lembke W, Woods R, Attinger-Toller I, Baenziger-Tobler N, Batey S, et al. Discovery and characterization of COVA322, a clinical-stage bispecific TNF/IL-17A inhibitor for the treatment of inflammatory diseases. MAbs. 2016;8(1):141–9. https://doi.org/10.1080/19420862.2015.1093266.

    Article  CAS  PubMed  Google Scholar 

  28. Silacci M, Baenziger-Tobler N, Lembke W, Zha W, Batey S, Bertschinger J, et al. Linker length matters, fynomer-Fc fusion with an optimized linker displaying picomolar IL-17A inhibition potency. J Biol Chem. 2014;289(20):14392–8. https://doi.org/10.1074/jbc.M113.534578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lembke W, Schlereth B, Bertschinger U, Grabulovski D, Locher M. COVA322: a clinical stage bispecific TNF/IL-17A inhibitor for the treatment of inflammatory diseases [abstract]. Arthritis Rheumatol. 2014;66:1511.

    Google Scholar 

  30. Benschop RJ, Chow CK, Tian Y, Nelson J, Barmettler B, Atwell S, et al. Development of tibulizumab, a tetravalent bispecific antibody targeting BAFF and IL-17A for the treatment of autoimmune disease. MAbs. 2019;11(6):1175–90. https://doi.org/10.1080/19420862.2019.1624463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Raghu G, Richeldi L, Crestani B, Wung P, Bejuit R, Esperet C, et al. SAR156597 in idiopathic pulmonary fibrosis: a phase 2 placebo-controlled study (DRI11772). Eur Respir J. 2018. https://doi.org/10.1183/13993003.01130-2018.

    Article  PubMed  Google Scholar 

  32. Allanore Y, Denton C, Khanna D, Soubrane C, Esperet C, Marrache F, et al. Efficacy and safety of romilkimab in diffuse cutaneous systemic sclerosis (dcSSc): a randomized, double-blind, placebo-controlled, 24-week, proof of concept study [abstract]. Arthritis Rheumatol. 2019;71(suppl 10):1654.

    Google Scholar 

  33. Vanheusden KDL, Hemeryck A, Vicari A, Grenningloh R, Poelmans S, Wouters H, Stöhr T. Pre-clinical proof-of-concept of ALX-0761, a Nanobody® neutralizing both IL- 17A and F in a cynomolgus monkey collagen induced arthritis model [abstract]. Arthritis Rheum. 2013;65:543.

    Article  Google Scholar 

  34. Svecova D, Lubell MW, Casset-Semanaz F, Mackenzie H, Grenningloh R, Krueger JG. A randomized, double-blind, placebo-controlled phase 1 study of multiple ascending doses of subcutaneous M1095, an anti-interleukin 17A/F nanobody, in moderate-to-severe psoriasis. J Am Acad Dermatol. 2019;81(1):196–203. https://doi.org/10.1016/j.jaad.2019.03.056.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang M, Lee F, Knize A, Jacobsen F, Yu S, Ishida K, et al. Development of an ICOSL and BAFF bispecific inhibitor AMG 570 for systemic lupus erythematosus treatment. Clin Exp Rheumatol. 2019;37(6):906–14.

    PubMed  Google Scholar 

  36. Cheng L, Hsu H, Kankam M, Siebers N, Stoltz R, Abuqayyas L, et al. Development and First-in-human characterization of an ICOSL and BAFF bispecific inhibitor AMG 570 for SLE treatment [abstract]. Arthritis Rheumatol. 2018;70(suppl 10):2671.

    Google Scholar 

  37. Veri MC, Burke S, Huang L, Li H, Gorlatov S, Tuaillon N, et al. Therapeutic control of B cell activation via recruitment of Fcgamma receptor IIb (CD32B) inhibitory function with a novel bispecific antibody scaffold. Arthritis Rheum. 2010;62(7):1933–43. https://doi.org/10.1002/art.27477.

    Article  CAS  PubMed  Google Scholar 

  38. Pandya N, ChencW, Lohr J, Yao XT, Burns R, Li H, et al. OP0201 safety, tolerability, and functional activity of MGD010, a Dart® molecule targeting CD32B and CD79B, following a single dose administration in healthy volunteers [abstract]. Ann Rheum Dis. 2016;75:132.

    Article  Google Scholar 

  39. Chen W, Shankar S, Lohr J, Yao XT, Li H, Chen X, et al. SAT0027 Immunomodulatory effects of MGD010, a dart® molecule targeting human B-CELL CD32B and CD79B [abstract]. Ann Rheum Dis. 2017;76(suppl 2):777. https://doi.org/10.1136/annrheumdis-2017-eular.6434.

    Google Scholar 

  40. Mease PJ, Genovese MC, Weinblatt ME, Peloso PM, Chen K, Othman AA, et al. Phase II study of ABT-122, a tumor necrosis factor- and interleukin-17A-targeted dual variable domain immunoglobulin, in patients with psoriatic arthritis with an inadequate response to methotrexate. Arthritis Rheumatol. 2018;70(11):1778–89. https://doi.org/10.1002/art.40579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Genovese MC, Weinblatt ME, Aelion JA, Mansikka HT, Peloso PM, Chen K, et al. ABT-122, a bispecific dual variable domain immunoglobulin targeting tumor necrosis factor and interleukin-17A, in patients with rheumatoid arthritis with an inadequate response to methotrexate: a randomized. Double-blind study. Arthritis Rheumatol. 2018;70(11):1710–20. https://doi.org/10.1002/art.40580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Genovese MC, Weinblatt ME, Mease PJ, Aelion JA, Peloso PM, Chen K, et al. Dual inhibition of tumour necrosis factor and interleukin-17A with ABT-122: open-label long-term extension studies in rheumatoid arthritis or psoriatic arthritis. Rheumatology (Oxford). 2018;57(11):1972–81. https://doi.org/10.1093/rheumatology/key173.

    Article  CAS  Google Scholar 

  43. Fischer JA, Hueber AJ, Wilson S, Galm M, Baum W, Kitson C, et al. Combined inhibition of tumor necrosis factor alpha and interleukin-17 as a therapeutic opportunity in rheumatoid arthritis: development and characterization of a novel bispecific antibody. Arthritis Rheumatol. 2015;67(1):51–62. https://doi.org/10.1002/art.38896.

    Article  CAS  PubMed  Google Scholar 

  44. Xu T, Ying T, Wang L, Zhang XD, Wang Y, Kang L, et al. A native-like bispecific antibody suppresses the inflammatory cytokine response by simultaneously neutralizing tumor necrosis factor-alpha and interleukin-17A. Oncotarget. 2017;8(47):81860–72. https://doi.org/10.18632/oncotarget.19899.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kanakaraj P, Puffer BA, Yao XT, Kankanala S, Boyd E, Shah RR, et al. Simultaneous targeting of TNF and Ang2 with a novel bispecific antibody enhances efficacy in an in vivo model of arthritis. MAbs. 2012;4(5):600–13. https://doi.org/10.4161/mabs.21227.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kim Y, Yi H, Jung H, Rim YA, Park N, Kim J, et al. A dual target-directed agent against interleukin-6 receptor and tumor necrosis factor alpha ameliorates experimental arthritis. Sci Rep. 2016;6:20150. https://doi.org/10.1038/srep20150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang Y, Wu Q, Liu Z, Guo X, Zhou L, Wang Y, et al. A recombinant IgG-like bispecific antibody acting as interleukin-1beta and interleukin-17A inhibitor exhibits a promising efficacy for rheumatoid arthritis. Biomed Pharmacother. 2017;89:426–37. https://doi.org/10.1016/j.biopha.2017.02.045.

    Article  CAS  PubMed  Google Scholar 

  48. Lyman M, Lieuw V, Richardson R, Timmer A, Stewart C, Granger S, et al. A bispecific antibody that targets IL-6 receptor and IL-17A for the potential therapy of patients with autoimmune and inflammatory diseases. J Biol Chem. 2018;293(24):9326–34. https://doi.org/10.1074/jbc.M117.818559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mabry R, Lewis KE, Moore M, McKernan PA, Bukowski TR, Bontadelli K, et al. Engineering of stable bispecific antibodies targeting IL-17A and IL-23. Protein Eng Des Sel. 2010;23(3):115–27. https://doi.org/10.1093/protein/gzp073.

    Article  CAS  PubMed  Google Scholar 

  50. Robert R, Juglair L, Lim EX, Ang C, Wang CJH, Ebert G, et al. A fully humanized IgG-like bispecific antibody for effective dual targeting of CXCR3 and CCR6. PLoS One. 2017;12(9):e0184278. https://doi.org/10.1371/journal.pone.0184278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nosenko MA, Atretkhany KN, Mokhonov VV, Efimov GA, Kruglov AA, Tillib SV, et al. VHH-based bispecific antibodies targeting cytokine production. Front Immunol. 2017;8:1073. https://doi.org/10.3389/fimmu.2017.01073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tovey MG, Lallemand C. Immunogenicity and other problems associated with the use of biopharmaceuticals. Ther Adv Drug Saf. 2011;2(3):113–28. https://doi.org/10.1177/2042098611406318.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Trivedi A, Stienen S, Zhu M, Li H, Yuraszeck T, Gibbs J, et al. Clinical pharmacology and translational aspects of bispecific antibodies. Clin Transl Sci. 2017;10(3):147–62. https://doi.org/10.1111/cts.12459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Davda J, Declerck P, Hu-Lieskovan S, Hickling TP, Jacobs IA, Chou J, et al. Immunogenicity of immunomodulatory, antibody-based, oncology therapeutics. J Immunother Cancer. 2019;7(1):105. https://doi.org/10.1186/s40425-019-0586-0.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Nagata S, Pastan I. Removal of B cell epitopes as a practical approach for reducing the immunogenicity of foreign protein-based therapeutics. Adv Drug Deliv Rev. 2009;61(11):977–85. https://doi.org/10.1016/j.addr.2009.07.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Su Y, Rossi R, De Groot AS, Scott DW. Regulatory T cell epitopes (Tregitopes) in IgG induce tolerance in vivo and lack immunogenicity per se. J Leukoc Biol. 2013;94(2):377–83. https://doi.org/10.1189/jlb.0912441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hindryckx P, Novak G, Vande Casteele N, Khanna R, Laukens D, Jairath V, et al. Incidence, prevention and management of anti-drug antibodies against therapeutic antibodies in inflammatory bowel disease: a practical overview. Drugs. 2017;77(4):363–77. https://doi.org/10.1007/s40265-017-0693-5.

    Article  CAS  PubMed  Google Scholar 

  58. Unverdorben F, Richter F, Hutt M, Seifert O, Malinge P, Fischer N, et al. Pharmacokinetic properties of IgG and various Fc fusion proteins in mice. MAbs. 2016;8(1):120–8. https://doi.org/10.1080/19420862.2015.1113360.

    Article  CAS  PubMed  Google Scholar 

  59. Suntharalingam G, Perry MR, Ward S, Brett SJ, Castello-Cortes A, Brunner MD, et al. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med. 2006;355(10):1018–28. https://doi.org/10.1056/NEJMoa063842.

    Article  CAS  PubMed  Google Scholar 

  60. Nasi S, Ea HK, So A, Busso N. Revisiting the role of interleukin-1 pathway in osteoarthritis: interleukin-1alpha and -1beta, and NLRP3 inflammasome are not involved in the pathological features of the murine menisectomy model of osteoarthritis. Front Pharmacol. 2017;8:282. https://doi.org/10.3389/fphar.2017.00282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author acknowledges support from The Science and Technology Development Fund, Macau SAR (File no. FDCT/131/2016/A3, FDCT/0015/2018/A1), the Multi-Year Research Grant (file no. MYRG2019-00069-FHS), Start-up Research Grant (file no.SRG2016-00082-FHS), the intramural research program of the Faculty of Health Sciences, University of Macau, and National Key Research and Development Project of the Ministry of Science and Technology of China (2019YFA09004400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Zhao.

Ethics declarations

Funding

No funding was received for this review.

Conflict of interest

Qi Zhao has no conflicts of interest that are directly relevant to the content of this article.

Ethical approval

Not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q. Bispecific Antibodies for Autoimmune and Inflammatory Diseases: Clinical Progress to Date. BioDrugs 34, 111–119 (2020). https://doi.org/10.1007/s40259-019-00400-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40259-019-00400-2

Navigation