Skip to main content

Advertisement

Log in

Anemia in Cardiovascular Disease: Marker of Disease Severity or Disease-modifying Therapeutic Target?

  • Coronary Heart Disease (S. Virani and S. Naderi, Section Editors)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

In this review paper, we examine the latest evidence regarding the use of iron supplementation, erythropoiesis-stimulating agents (ESAs), and blood transfusions as therapeutic targets for anemia to mitigate morbidity and mortality in patients with cardiovascular disease.

Recent Findings

Intravenous ferric carboxymaltose (FC) injections in heart failure (HF) have resulted in improved self-reported patient symptoms; higher exercise capacity, as measured by 6-min walk test distance in anemic patients; and lower re-hospitalization rates in iron deficient patients. Darbepoetin alfa has shown evidence of improved Kansas City Cardiomyopathy Questionnaire scores. No mortality benefits have been noted thus far with FC injections or darbepoetin in HF, with an increase in adverse events with darbepoetin. Aggressive transfusions (Hg < 10 g/dL) are not associated with improved outcomes in cardiovascular disease.

Summary

Quality of life metrics, rather than mortality, appear to improve with IV FC and ESA use in HF. More studies are required to see if these treatments have a role in coronary artery disease. Current evidence suggests that anemia is a marker of underlying disease severity, with a limited role in disease modification. Further studies are required to solidify our understanding of this topic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kassebaum NJ, Jasrasaria R, Naghavi M, Wulf SK, Johns N, Lozano R, et al. A systematic analysis of global anemia burden from 1990 to 2010. Blood. 2014;123(5):615–24. https://doi.org/10.1182/blood-2013-06-508325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mozos I. Mechanisms linking red blood cell disorders and cardiovascular diseases. Biomed Res Int. 2015;2015: 682054. https://doi.org/10.1155/2015/682054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tang Y-D, Katz SD. Anemia in Chronic Heart Failure. Circulation. 2006;113(20):2454–61. https://doi.org/10.1161/CIRCULATIONAHA.105.583666.

    Article  PubMed  Google Scholar 

  4. McCullough PA, Lepor NE. Anemia: a modifiable risk factor for heart disease. Introduction Reviews in cardiovascular medicine. 2005;6(Suppl 3):S1-3.

    PubMed  Google Scholar 

  5. Collins AJ, Li S, Gilbertson DT, Liu J, Chen SC, Herzog CA. Chronic kidney disease and cardiovascular disease in the Medicare population. Kidney Int Suppl. 2003;87:S24-31. https://doi.org/10.1046/j.1523-1755.64.s87.5.x.

    Article  Google Scholar 

  6. Stucchi M, Cantoni S, Piccinelli E, Savonitto S, Morici N. Anemia and acute coronary syndrome: current perspectives. Vascular health and risk management. 2018;14:109–18. https://doi.org/10.2147/vhrm.S140951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sarnak MJ, Tighiouart H, Manjunath G, MacLeod B, Griffith J, Salem D, et al. Anemia as a risk factor for cardiovascular disease in The Atherosclerosis Risk in Communities (ARIC) study. J Am Coll Cardiol. 2002;40(1):27–33. https://doi.org/10.1016/s0735-1097(02)01938-1.

    Article  PubMed  Google Scholar 

  8. Vlagopoulos PT, Tighiouart H, Weiner DE, Griffith J, Pettitt D, Salem DN, et al. Anemia as a risk factor for cardiovascular disease and all-cause mortality in diabetes: the impact of chronic kidney disease. J Am Soc Nephrol. 2005;16(11):3403–10. https://doi.org/10.1681/asn.2005030226.

    Article  PubMed  Google Scholar 

  9. Sabatine MS, Morrow DA, Giugliano RP, Burton PB, Murphy SA, McCabe CH, et al. Association of hemoglobin levels with clinical outcomes in acute coronary syndromes. Circulation. 2005;111(16):2042–9. https://doi.org/10.1161/01.cir.0000162477.70955.5f.

    Article  CAS  PubMed  Google Scholar 

  10. McClellan WM, Flanders WD, Langston RD, Jurkovitz C, Presley R. Anemia and renal insufficiency are independent risk factors for death among patients with congestive heart failure admitted to community hospitals: a population-based study. J Am Soc Nephrol. 2002;13(7):1928–36. https://doi.org/10.1097/01.asn.0000018409.45834.fa.

    Article  PubMed  Google Scholar 

  11. Horwich TB, Fonarow GC, Hamilton MA, MacLellan WR, Borenstein J. Anemia is associated with worse symptoms, greater impairment in functional capacity and a significant increase in mortality in patients with advanced heart failure. J Am Coll Cardiol. 2002;39(11):1780–6. https://doi.org/10.1016/s0735-1097(02)01854-5.

    Article  PubMed  Google Scholar 

  12. Anand I, McMurray JJ, Whitmore J, Warren M, Pham A, McCamish MA, et al. Anemia and its relationship to clinical outcome in heart failure. Circulation. 2004;110(2):149–54. https://doi.org/10.1161/01.cir.0000134279.79571.73.

    Article  PubMed  Google Scholar 

  13. Mozaffarian D, Nye R, Levy WC. Anemia predicts mortality in severe heart failure: the prospective randomized amlodipine survival evaluation (PRAISE). J Am Coll Cardiol. 2003;41(11):1933–9. https://doi.org/10.1016/S0735-1097(03)00425-X.

    Article  PubMed  Google Scholar 

  14. He SW, Wang LX. The impact of anemia on the prognosis of chronic heart failure: a meta-analysis and systemic review. Congestive heart failure (Greenwich, Conn). 2009;15(3):123–30. https://doi.org/10.1111/j.1751-7133.2008.00030.x.

    Article  Google Scholar 

  15. Anand IS. Anemia and chronic heart failure implications and treatment options. J Am Coll Cardiol. 2008;52(7):501–11. https://doi.org/10.1016/j.jacc.2008.04.044.

    Article  PubMed  Google Scholar 

  16. Azzawi M, Hasleton P. Tumour necrosis factor alpha and the cardiovascular system: its role in cardiac allograft rejection and heart disease. Cardiovasc Res. 1999;43(4):850–9. https://doi.org/10.1016/s0008-6363(99)00138-8.

    Article  CAS  PubMed  Google Scholar 

  17. Barath P, Fishbein MC, Cao J, Berenson J, Helfant RH, Forrester JS. Detection and localization of tumor necrosis factor in human atheroma. Am J Cardiol. 1990;65(5):297–302. https://doi.org/10.1016/0002-9149(90)90291-8.

    Article  CAS  PubMed  Google Scholar 

  18. Cho HC, Yu G, Lee MY, Kim HS, Shin DH, Kim YN. TNF-α polymorphisms and coronary artery disease: association study in the Korean population. Cytokine. 2013;62(1):104–9. https://doi.org/10.1016/j.cyto.2013.02.008.

    Article  CAS  PubMed  Google Scholar 

  19. Steinvil A, Banai S, Leshem-Rubinow E, Rogowski O, Halkin A, Keren G, et al. The development of anemia of inflammation during acute myocardial infarction. Int J Cardiol. 2012;156(2):160–4. https://doi.org/10.1016/j.ijcard.2010.10.031.

    Article  PubMed  Google Scholar 

  20. Opasich C, Cazzola M, Scelsi L, De Feo S, Bosimini E, Lagioia R, et al. Blunted erythropoietin production and defective iron supply for erythropoiesis as major causes of anaemia in patients with chronic heart failure. Eur Heart J. 2005;26(21):2232–7. https://doi.org/10.1093/eurheartj/ehi388.

    Article  CAS  PubMed  Google Scholar 

  21. Jelkmann W, Pagel H, Wolff M, Fandrey J. Monokines inhibiting erythropoietin production in human hepatoma cultures and in isolated perfused rat kidneys. Life Sci. 1992;50(4):301–8. https://doi.org/10.1016/0024-3205(92)90338-p.

    Article  CAS  PubMed  Google Scholar 

  22. Morceau F, Dicato M, Diederich M. Pro-inflammatory cytokine-mediated anemia: regarding molecular mechanisms of erythropoiesis. Mediators Inflamm. 2009;2009: 405016. https://doi.org/10.1155/2009/405016.

    Article  CAS  PubMed  Google Scholar 

  23. Jelkmann W. Proinflammatory cytokines lowering erythropoietin production. Journal of interferon & cytokine research: the official journal of the International Society for Interferon and Cytokine Research. 1998;18(8):555–9. https://doi.org/10.1089/jir.1998.18.555.

    Article  CAS  Google Scholar 

  24. Jelkmann WE, Fandrey J, Frede S, Pagel H. Inhibition of erythropoietin production by cytokines. Implications for the anemia involved in inflammatory states. Annals of the New York Academy of Sciences. 1994;718:300–9; discussion 9–11.

  25. von Haehling S, Anker SD. Cardio-renal anemia syndrome. Contrib Nephrol. 2011;171:266–73. https://doi.org/10.1159/000327342.

    Article  Google Scholar 

  26. Malleshappa P, Shah BV. Prevalence of chronic kidney disease and the incidence of acute kidney injury in patients with coronary artery disease in Mumbai, India. Heart views: the official journal of the Gulf Heart Association. 2015;16(2):47–52. https://doi.org/10.4103/1995-705x.159219.

    Article  Google Scholar 

  27. Chatterjee B, Nydegger UE, Mohacsi P. Serum erythropoietin in heart failure patients treated with ACE-inhibitors or AT(1) antagonists. Eur J Heart Fail. 2000;2(4):393–8. https://doi.org/10.1016/s1388-9842(00)00110-0.

    Article  CAS  PubMed  Google Scholar 

  28. McCullough PA, Lepor NE. Piecing together the evidence on anemia: the link between chronic kidney disease and cardiovascular disease. Rev Cardiovasc Med. 2005;6(Suppl 3):S4-12.

    PubMed  Google Scholar 

  29. Albitar S, Genin R, Fen-Chong M, Serveaux MO, Bourgeon B. High dose enalapril impairs the response to erythropoietin treatment in haemodialysis patients. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association - European Renal Association. 1998;13(5):1206–10. https://doi.org/10.1093/ndt/13.5.1206.

    Article  CAS  Google Scholar 

  30. Cheungpasitporn W, Thongprayoon C, Chiasakul T, Korpaisarn S, Erickson SB. Renin-angiotensin system inhibitors linked to anemia: a systematic review and meta-analysis. QJM: monthly journal of the Association of Physicians. 2015;108(11):879–84. https://doi.org/10.1093/qjmed/hcv049.

    Article  CAS  PubMed  Google Scholar 

  31. Dhondt AW, Vanholder RC, Ringoir SM. Angiotensin-converting enzyme inhibitors and higher erythropoietin requirement in chronic haemodialysis patients. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association - European Renal Association. 1995;10(11):2107–9.

    CAS  Google Scholar 

  32. Pratt MC, Lewis-Barned NJ, Walker RJ, Bailey RR, Shand BI, Livesey J. Effect of angiotensin converting enzyme inhibitors on erythropoietin concentrations in healthy volunteers. Br J Clin Pharmacol. 1992;34(4):363–5. https://doi.org/10.1111/j.1365-2125.1992.tb05644.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. von Haehling S, Ebner N, Evertz R, Ponikowski P, Anker SD. Iron Deficiency in heart failure: an overview. JACC Heart failure. 2019;7(1):36–46. https://doi.org/10.1016/j.jchf.2018.07.015.

    Article  Google Scholar 

  34. Mordi IR, Tee A, Lang CC. Iron therapy in heart failure: ready for primetime? Card Fail Rev. 2018;4(1):28–32. https://doi.org/10.15420/cfr.2018:6:2.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Patel P, Nigam N, Sengupta N. Lower gastrointestinal bleeding in patients with coronary artery disease on antithrombotics and subsequent mortality risk. J Gastroenterol Hepatol. 2018;33(6):1185–91. https://doi.org/10.1111/jgh.14048.

    Article  CAS  PubMed  Google Scholar 

  36. Moore RA, Derry S, McQuay HJ. Faecal blood loss with aspirin, nonsteroidal anti-inflammatory drugs and cyclo-oxygenase-2 selective inhibitors: systematic review of randomized trials using autologous chromium-labelled erythrocytes. Arthritis Res Ther. 2008;10(1):R7. https://doi.org/10.1186/ar2355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Anker SD, Comin Colet J, Filippatos G, Willenheimer R, Dickstein K, Drexler H, et al. Ferric carboxymaltose in patients with heart failure and iron deficiency. N Engl J Med. 2009;361(25):2436–48. https://doi.org/10.1056/NEJMoa0908355.

    Article  CAS  PubMed  Google Scholar 

  38. Ponikowski P, van Veldhuisen DJ, Comin-Colet J, Ertl G, Komajda M, Mareev V, et al. Beneficial effects of long-term intravenous iron therapy with ferric carboxymaltose in patients with symptomatic heart failure and iron deficiency†. Eur Heart J. 2015;36(11):657–68. https://doi.org/10.1093/eurheartj/ehu385.

    Article  CAS  PubMed  Google Scholar 

  39. •• Ponikowski P, Kirwan BA, Anker SD, McDonagh T, Dorobantu M, Drozdz J, et al. Ferric carboxymaltose for iron deficiency at discharge after acute heart failure: a multicentre, double-blind, randomised, controlled trial. Lancet (London, England). 2020;396(10266):1895–904. https://doi.org/10.1016/s0140-6736(20)32339-4The AFFIRM-AHF trial is the first large-scale trial to assess the impact of IV FC supplementation on discharge in iron deficient CHF patients on mortality and re-hospitalization outcomes, rather than quality of life and symptomatic outcomes. Although no significant differences were noted in mortality, re-hospitalization rates appeared to be reduced in the IV FC supplementation arm.

    Article  CAS  Google Scholar 

  40. •• Lewis GD, Malhotra R, Hernandez AF, McNulty SE, Smith A, Felker GM, et al. Effect of Oral iron repletion on exercise capacity in patients with heart failure with reduced ejection fraction and iron deficiency: the IRONOUT HF randomized clinical trial. JAMA. 2017;317(19):1958–66. https://doi.org/10.1001/jama.2017.5427The IRONOUT-HF trial is the first trial to evaluate the impact of oral rather than IV iron supplementation in iron deficient CHF patients on exercise capacity. This trial showed no evidence for improved peak VO2 measurements at 16 weeks in patients supplemented with oral iron. This suggests that oral iron supplementation may not have a significant therapeutic role in CHF patients.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. • van Veldhuisen DJ, Ponikowski P, van der Meer P, Metra M, Böhm M, Doletsky A, et al. Effect of Ferric Carboxymaltose on Exercise Capacity in Patients With Chronic Heart Failure and Iron Deficiency. Circulation. 2017;136(15):1374–83. https://doi.org/10.1161/circulationaha.117.027497The EFFECT-HF trial evaluated the impact of IV FC on exercise capacity as measured by peak VO2 in iron deficient HF patients. This trial found favorable, but not statistically significant improvements of IV FC on peak VO2 at 24 weeks. The longer follow-up period of this trial in comparison to the IRONOUT-HF trial suggests that longer follow up periods may be needed in trials studying the efficacy of oral iron regimens on peak VO2 in anemic CHF patients.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sullivan JL. Iron and the sex difference in heart disease risk. Lancet (London, England). 1981;1(8233):1293–4. https://doi.org/10.1016/s0140-6736(81)92463-6.

    Article  CAS  Google Scholar 

  43. de Valk B, Marx JJ. Iron, atherosclerosis, and ischemic heart disease. Arch Intern Med. 1999;159(14):1542–8. https://doi.org/10.1001/archinte.159.14.1542.

    Article  PubMed  Google Scholar 

  44. Kiechl S, Aichner F, Gerstenbrand F, Egger G, Mair A, Rungger G et al. Body iron stores and presence of carotid atherosclerosis. Results from the Bruneck Study. Arteriosclerosis and thrombosis : a journal of vascular biology. 1994;14(10):1625–30. doi:https://doi.org/10.1161/01.atv.14.10.1625.

  45. Salonen JT, Nyyssönen K, Korpela H, Tuomilehto J, Seppänen R, Salonen R. High stored iron levels are associated with excess risk of myocardial infarction in eastern Finnish men. Circulation. 1992;86(3):803–11. https://doi.org/10.1161/01.cir.86.3.803.

    Article  CAS  PubMed  Google Scholar 

  46. Duffy SJ, Biegelsen ES, Holbrook M, Russell JD, Gokce N, Keaney JF Jr, et al. Iron chelation improves endothelial function in patients with coronary artery disease. Circulation. 2001;103(23):2799–804. https://doi.org/10.1161/01.cir.103.23.2799.

    Article  CAS  PubMed  Google Scholar 

  47. Ponikowska B, Suchocki T, Paleczny B, Olesinska M, Powierza S, Borodulin-Nadzieja L, et al. Iron status and survival in diabetic patients with coronary artery disease. Diabetes Care. 2013;36(12):4147–56. https://doi.org/10.2337/dc13-0528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Weidmann H, Bannasch JH, Waldeyer C, Shrivastava A, Appelbaum S, Ojeda-Echevarria FM, et al. Iron metabolism contributes to prognosis in coronary artery disease: prognostic value of the soluble transferrin receptor within the atherogene Study. J Am Heart Assoc. 2020;9(9): e015480. https://doi.org/10.1161/jaha.119.015480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Miller M, Hutchins GM. Hemochromatosis, Multiorgan Hemosiderosis, and coronary artery disease. JAMA. 1994;272(3):231–3. https://doi.org/10.1001/jama.1994.03520030073031.

    Article  CAS  PubMed  Google Scholar 

  50. Niederau C. Iron overload and atherosclerosis. Hepatology (Baltimore, MD). 2000;32(3):672–4. https://doi.org/10.1053/jhep.2000.17921.

    Article  CAS  Google Scholar 

  51. Mancini DM, Katz SD, Lang CC, LaManca J, Hudaihed A, Androne AS. Effect of erythropoietin on exercise capacity in patients with moderate to severe chronic heart failure. Circulation. 2003;107(2):294–9. https://doi.org/10.1161/01.cir.0000044914.42696.6a.

    Article  CAS  PubMed  Google Scholar 

  52. Silverberg DS, Wexler D, Blum M, Keren G, Sheps D, Leibovitch E, et al. The use of subcutaneous erythropoietin and intravenous iron for the treatment of the anemia of severe, resistant congestive heart failure improves cardiac and renal function and functional cardiac class, and markedly reduces hospitalizations. J Am Coll Cardiol. 2000;35(7):1737–44. https://doi.org/10.1016/s0735-1097(00)00613-6.

    Article  CAS  PubMed  Google Scholar 

  53. Ghali JK, Anand IS, Abraham WT, Fonarow GC, Greenberg B, Krum H, et al. Randomized double-blind trial of darbepoetin alfa in patients with symptomatic heart failure and anemia. Circulation. 2008;117(4):526–35. https://doi.org/10.1161/CIRCULATIONAHA.107.698514.

    Article  CAS  PubMed  Google Scholar 

  54. Swedberg K, Young JB, Anand IS, Cheng S, Desai AS, Diaz R et al. Treatment of anemia with darbepoetin alfa in systolic heart failure. the New England journal of medicine. 2013;368(13):1210–9. doi:https://doi.org/10.1056/NEJMoa1214865.

  55. Lipsic E, Schoemaker RG, van der Meer P, Voors AA, van Veldhuisen DJ, van Gilst WH. Protective effects of erythropoietin in cardiac ischemia: from bench to bedside. J Am Coll Cardiol. 2006;48(11):2161–7. https://doi.org/10.1016/j.jacc.2006.08.031.

    Article  CAS  PubMed  Google Scholar 

  56. • Steppich B, Groha P, Ibrahim T, Schunkert H, Laugwitz KL, Hadamitzky M, et al. Effect of Erythropoietin in patients with acute myocardial infarction: five-year results of the REVIVAL-3 trial. BMC Cardiovasc Disord. 2017;17(1):38. https://doi.org/10.1186/s12872-016-0464-3This trial evaluated the impact of EPO treatments in post-PCI STEMI patients on major adverse cardiovascular events over a 5-year period. No significant difference in cardiovascular events were found with EPO treatment, even in a subgroup analysis of anemic STEMI patients. This suggests that cardioprotective effects of EPO noted in basic science and animal studies may not be translatable to clinical practice.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hébert PC, Wells G, Blajchman MA, Marshall J, Martin C, Pagliarello G et al. A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion Requirements in Critical Care Investigators, Canadian Critical Care Trials Group. The New England journal of medicine. 1999;340(6):409–17. doi:https://doi.org/10.1056/nejm199902113400601.

  58. Cooper HA, Rao SV, Greenberg MD, Rumsey MP, McKenzie M, Alcorn KW, et al. Conservative versus liberal red cell transfusion in acute myocardial infarction (the CRIT Randomized Pilot Study). Am J Cardiol. 2011;108(8):1108–11. https://doi.org/10.1016/j.amjcard.2011.06.014.

    Article  PubMed  Google Scholar 

  59. Carson JL, Brooks MM, Abbott JD, Chaitman B, Kelsey SF, Triulzi DJ, et al. Liberal versus restrictive transfusion thresholds for patients with symptomatic coronary artery disease. Am Heart J. 2013;165(6):964-71.e1. https://doi.org/10.1016/j.ahj.2013.03.001.

    Article  PubMed  PubMed Central  Google Scholar 

  60. •• Ducrocq G, Gonzalez-Juanatey JR, Puymirat E, Lemesle G, Cachanado M, Durand-Zaleski I, et al. Effect of a restrictive vs liberal blood transfusion strategy on major cardiovascular events among patients with acute myocardial infarction and anemia: the REALITY Randomized clinical Trial. JAMA. 2021;325(6):552–60. https://doi.org/10.1001/jama.2021.0135The REALITY trial is the first large-scale trial comparing restrictive (8 g/dL) vs. liberal (10 g/dL) transfusion thresholds on cardiovascular events among anemic patients with acute myocardial infaction. Results show non-inferiority of a restrictive transfusion threshold compared to a liberal threshold. This suggests that restrictive transfusion thresholds may be the most efficient use of blood resources, even in cardiovascular patients.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Qaseem A, Humphrey LL, Fitterman N, Starkey M, Shekelle P. Treatment of anemia in patients with heart disease: a clinical practice guideline from the American College of Physicians. Ann Intern Med. 2013;159(11):770–9. https://doi.org/10.7326/0003-4819-159-11-201312030-00009.

    Article  PubMed  Google Scholar 

  62. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Colvin MM, et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation. 2017;136(6):e137–61. https://doi.org/10.1161/cir.0000000000000509.

    Article  PubMed  Google Scholar 

  63. Carson JL, Guyatt G, Heddle NM, Grossman BJ, Cohn CS, Fung MK, et al. clinical practice guidelines from the AABB: red blood cell transfusion thresholds and storage. JAMA. 2016;316(19):2025–35. https://doi.org/10.1001/jama.2016.9185.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ann Sutton, Research Medical Library, for editing this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saamir A. Hassan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Coronary Heart Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goel, H., Hirsch, J.R., Deswal, A. et al. Anemia in Cardiovascular Disease: Marker of Disease Severity or Disease-modifying Therapeutic Target?. Curr Atheroscler Rep 23, 61 (2021). https://doi.org/10.1007/s11883-021-00960-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11883-021-00960-1

Keywords

Navigation