Skip to main content
Log in

Applying embodied cognition: from useful interventions and their theoretical underpinnings to practical applications

  • Original Article
  • Published:
ZDM Aims and scope Submit manuscript

Abstract

Embodied trainings allowing children to move their whole body in space have recently been shown to foster the acquisition of basic numerical competencies (e.g. magnitude understanding, addition performance). Following a brief summary of recent embodied training studies, we integrate the different results into a unified model framework to elucidate the working mechanisms of embodied trainings: Mapping processes, interaction between different regions of personal space, and the integration of different spatial frames of reference are addressed as potential factors underlying the effectiveness of embodied numerical trainings. In the concluding section, we elaborate on the practical applications of embodied numerical trainings in educational setting. We discuss under which circumstances embodied trainings work best, that is, for which age group and/or which numerical content embodied trainings should be most beneficial and which aspects need to be considered when aiming at applying embodied numerical trainings in formal educational settings like kindergartens or schools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andres, M., Michaux, N., & Pesenti, M. (2012). Common substrate for mental arithmetic and finger representation in the parietal cortex. NeuroImage, 62(3), 1520–1528. doi:10.1016/j.neuroimage.2012.05.047.

    Article  Google Scholar 

  • Anelli, F., Lugli, L., Baroni, G., Borghi, A. M., & Nicoletti, R. (2014). Walking boosts your performance in making additions and subtractions. Frontiers in Psychology. doi:10.3389/fpsyg.2014.01459.

    Google Scholar 

  • Barsalou, L. W. (1999). Perceptions of perceptual symbols. Behavioral and Brain Sciences, 22(04), 637–660. doi:10.1017/S0140525X99532147.

    Article  Google Scholar 

  • Barsalou, L. W. (2010). Grounded cognition: Past, present, and future. Topics in Cognitive Science, 2(4), 716–724. doi:10.1111/j.1756-8765.2010.01115.x.

    Article  Google Scholar 

  • Barth, H. C., & Paladino, A. M. (2011). The development of numerical estimation: Evidence against a representational shift. Developmental Science, 14(1), 125–135. doi:10.1111/j.1467-7687.2010.00962.x.

    Article  Google Scholar 

  • Booth, J. L., & Siegler, R. S. (2008). Numerical magnitude representations influence arithmetic learning. Child Development, 79(4), 1016–1031. doi:10.1111/j.1467-8624.2008.01173.x.

    Article  Google Scholar 

  • Bueti, D., & Walsh, V. (2009). The parietal cortex and the representation of time, space, number and other magnitudes. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 1831–1840. doi:10.1098/rstb.2009.0028.

    Article  Google Scholar 

  • Burgess, N. (2006). Spatial memory: How egocentric and allocentric combine. Trends in Cognitive Sciences, 10(12), 551–557. doi:10.1016/j.tics.2006.10.005.

    Article  Google Scholar 

  • Butterworth, B. (2005). The development of arithmetical abilities. Journal of Child Psychology and Psychiatry, 46(1), 3–18. doi:10.1111/j.1469-7610.2004.00374.x.

    Article  Google Scholar 

  • Butterworth, B. (2010). Foundational numerical capacities and the origins of dyscalculia. Trends in Cognitive Sciences, 14, 534–541. doi:10.1016/j.tics.2010.09.007.

    Article  Google Scholar 

  • Cohen, D. J., & Blanc-Goldhammer, D. (2011). Numerical bias in bounded and unbounded number line tasks. Psychonomic Bulletin & Review, 18(2), 331–338. doi:10.3758/s13423-011-0059-z.

    Article  Google Scholar 

  • Cohen, D. J., & Sarnecka, B. W. (2014). Children’s number-line estimation shows development of measurement skills (not number representations). Developmental Psychology, 50(6), 1640–1652. doi:10.1037/a0035901.

    Article  Google Scholar 

  • Dackermann, T., Fischer, U., Cress, U., Nuerk, H.-C., & Moeller, K. (2016a). Bewegtes Lernen numerischer Kompetenzen. Psychologische Rundschau, 67, 102–109. doi:10.1026/0033-3042/a000302.

    Article  Google Scholar 

  • Dackermann, T., Fischer, U., Huber, S., Nuerk, H.-C., & Moeller, K. (2016b). Training the equidistant principle of number line spacing. Cognitive Processing, 17(3), 243–258. doi:10.1007/s10339-016-0763-8.

    Article  Google Scholar 

  • Dackermann, T., Huber, S., Bahnmueller, J., Nuerk, H. C., & Moeller, K. (2015). An integration of competing accounts on children’s number line estimation. Frontiers in Psychology. doi:10.3389/fpsyg.2015.00884.

    Google Scholar 

  • de Hevia, M. D., Girelli, L., Addabbo, M., & Macchi Cassia, V. (2014). Human infants’ preference for left-to-right oriented increasing numerical sequences. Plos One, 9(5), e96412. doi:10.1371/journal.pone.0096412.

    Article  Google Scholar 

  • de Hevia, M. D., Girelli, L., & Macchi Cassia, V. (2012). Minds without language represent number through space: origins of the mental number line. Frontiers in Psychology. doi:10.3389/fpsyg.2012.00466.

    Google Scholar 

  • Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122(3), 371–396. doi:10.1037/0096-3445.122.3.371.

    Article  Google Scholar 

  • Di Luca, S., & Pesenti, M. (2008). Masked priming effect with canonical finger numeral configurations. Experimental Brain Research, 185(1), 27–39. doi:10.1007/s00221-007-1132-8.

    Article  Google Scholar 

  • Domahs, F., Moeller, K., Huber, S., Willmes, K., & Nuerk, H.-C. (2010). Embodied numerosity: Implicit hand-based representations influence symbolic number processing across cultures. Cognition, 116(2), 251–266. doi:10.1016/j.cognition.2010.05.007.

    Article  Google Scholar 

  • Fischer, M. H., Pratt, J., & Adam, J. J. (2007). On the timing of reference frames for action control. Experimental Brain Research, 183(1), 127–132. doi:10.1007/s00221-007-1104-z.

    Article  Google Scholar 

  • Fischer, U., Link, T., Cress, U., Nuerk, H.-C., & Moeller, K. (2015a). Math with the dance mat–on the benefits of embodied numerical training approaches. In V. R. Lee (Ed.), Learning technologies and the body: Integration and implementation in formal and informal learning environments (pp. 149–163). London: Routledge.

    Google Scholar 

  • Fischer, U., Moeller, K., Bientzle, M., Cress, U., & Nuerk, H.-C. (2011). Sensori-motor spatial training of number magnitude representation. Psychonomic Bulletin & Review, 18(1), 177–183. doi:10.3758/s13423-010-0031-3.

    Article  Google Scholar 

  • Fischer, U., Moeller, K., Huber, S., Cress, U., & Nuerk, H.-C. (2015b). Full-body movement in numerical trainings: A pilot study with an interactive whiteboard. International Journal of Serious Games, 2, 23–35.

    Article  Google Scholar 

  • Fritz, A., Ehlert, A., & Balzer, L. (2013). Development of mathematical concepts as basis for an elaborated mathematical understanding. South African Journal of Childhood Education, 3, 38–67.

    Google Scholar 

  • Fuson, K. C. (1988). Children’s counting and concepts of number. New York: Springer.

    Book  Google Scholar 

  • Gabbard, C., Cordova, A., & Ammar, D. (2007). Estimation of reach in peripersonal and extrapersonal space: A developmental view. Developmental Neuropsychology, 32(3), 749–756. doi:10.1080/87565640701539451.

    Article  Google Scholar 

  • Gallese, V., & Lakoff, G. (2005). The brain’s concepts: The role of the sensory-motor system in conceptual knowledge. Cognitive Neuropsychology, 22(3–4), 455–479. doi:10.1080/02643290442000310.

    Article  Google Scholar 

  • Gersten, R., Chard, D. J., Jayanthi, M., Baker, S. K., Morphy, P., & Flojo, J. (2009). Mathematics instruction for students with learning disabilities: A meta-analysis of instructional components. Review of Educational Research, 79(3), 1202–1242. doi:10.3102/0034654309334431.

    Article  Google Scholar 

  • Glenberg, A. M. (2010). Embodiment as a unifying perspective for psychology. Wiley Interdisciplinary Reviews, 1(4), 586–596. doi:10.1002/wcs.55.

    Google Scholar 

  • Glenberg, A. M., Witt, J. K., & Metcalfe, J. (2013). From the revolution to embodiment: 25 years of. Cognitive Psychology, 8(5), 573–585. doi:10.1177/1745691613498098.

    Google Scholar 

  • Göbel, S. M., Shaki, S., & Fischer, M. H. (2011). The cultural number line: A review of cultural and linguistic influences on the development of number processing. Journal of Cross-Cultural Psychology, 42(4), 543–565. doi:10.1177/0022022111406251.

    Article  Google Scholar 

  • Halligan, P. W., Fink, G. R., Marshall, J. C., & Vallar, G. (2003). Spatial cognition: evidence from visual neglect. Trends in Cognitive Sciences, 7(3), 125–133. doi:10.1016/S1364-6613(03)00032-9.

    Article  Google Scholar 

  • Hartmann, M., Grabherr, L., & Mast, F. W. (2012). Moving along the mental number line: Interactions between whole-body motion and numerical cognition. Journal of Experimental Psychology, 38(6), 1416–1427. doi:10.1037/a0026706.

    Google Scholar 

  • Helmreich, I., Zuber, J., Pixner, S., Kaufmann, L., Nuerk, H.-C., & Moeller, K. (2011). Language effects on children’s non-verbal number line estimations. Journal of Cross-Cultural Psychology, 42, 598–613. doi:10.1177/0022022111406026.

    Article  Google Scholar 

  • Jordan, N., Kaplan, D., Ramineni, C., & Locuniak, M. N. (2009). Early math matters: Kindergarten number competence and later mathematics outcomes. Developmental Psychology, 45(3), 850–867. doi:10.1037/a0014939.

    Article  Google Scholar 

  • Kaufmann, L., & Nuerk, H.-C. (2006). Die Entwicklung des Rechnens und dessen Störungen: Genese, Modelle, Diagnostik und Intervention [The development of arithmetic and its impairments: Emergence, models, diagnostics, and intervention]. Zeitschrift des BVL, 2, 11–16.

    Google Scholar 

  • Keulen, R. F., Adam, J. J., Fischer, M. H., Kuipers, H., & Jolles, J. (2002). Selective reaching: evidence for multiple frames of reference. Journal of Experimental Psychology, 28, 515–526. doi:10.1037/0096-1523.28.3.515.

    Google Scholar 

  • Klein, E., Moeller, K., Willmes, K., Nuerk, H.-C., & Domahs, F. (2011). The influence of implicit hand-based representations on mental arithmetic. Frontiers in Psychology. doi:10.3389/Fpsya.2011.00197.

    Google Scholar 

  • Krajewski, K., Nieding, G., & Schneider, W. (2007). Mengen, zählen, Zahlen: Die Welt der Mathematik verstehen (MZZ) [Magnitudes, counting, numbers: Understanding the world of mathematics]. Berlin: Cornelsen.

    Google Scholar 

  • Lakoff, G. (1987). Women, fire, and dangerous things: What categories reveal about the mind. Chicago: University of Chicago Press.

    Book  Google Scholar 

  • Lakoff, G., & Núñez, R. E. (2000). Where mathematics comes from: How the embodied mind brings mathematics into being. New York, NY: Basic books.

    Google Scholar 

  • Link, T., Huber, S., Nuerk, H.-C., & Moeller, K. (2014a). Unbounding the mental number line–new evidence on children’s spatial representation of numbers. Frontiers in Psychology. doi:10.3389/fpsyg.2013.01021.

    Google Scholar 

  • Link, T., Moeller, K., Huber, S., Fischer, U., & Nuerk, H.-C. (2013). Walk the number line–An embodied training of numerical concepts. Trends in Neuroscience and Education, 2(2), 74–84. doi:10.1016/j.tine.2013.06.005.

    Article  Google Scholar 

  • Link, T., Nuerk, H.-C., & Moeller, K. (2014c). On the relation between the mental number line and arithmetic competencies. The Quarterly Journal of Experimental Psychology, 67(8), 1597–1613. doi:10.1080/17470218.2014.892517.

    Article  Google Scholar 

  • Link, T., Schwarz, E. J., Huber, S., Fischer, U., Nuerk, H.-C., Cress, U., & Moeller, K. (2014b). Maths on the mat: Embodied training of basic numerical competencies. Zeitschrift Für Erziehungswissenschaft, 17(2), 257–277. doi:10.1007/s11618-014-0533-2.

    Article  Google Scholar 

  • Loetscher, T., Schwarz, U., Schubiger, M., & Brugger, P. (2008). Head turns bias the brain’s internal random generator. Current Biology, 18(2), R60–R62. doi:10.1016/j.cub.2007.11.015.

    Article  Google Scholar 

  • Looi, C. Y., Duta, M., Brem, A.-K., Huber, S., Nuerk, H.-C., & Cohen Kadosh, R. (2016). Combining brain stimulation and video game to promote long-term transfer of learning and cognitive enhancement. Scientific Reports, 6, 22003. doi:10.1038/srep22003.

    Article  Google Scholar 

  • Moeller, K., Fischer, U., Link, T., Wasner, M., Huber, S., Cress, U., & Nuerk, H.-C. (2012). Learning and development of embodied numerosity. Cognitive Processing, 13, Suppl, 1, 271–274. doi:10.1007/s10339-012-0457-9.

    Article  Google Scholar 

  • Moyer, R. S., & Landauer, T. K. (1967). Time required for judgements of numerical inequality. Nature, 215(5109), 1519–1520. doi:10.1038/2151519a0.

    Article  Google Scholar 

  • Myachykov, A., Scheepers, C., Fischer, M. H., & Kessler, K. (2013). TEST: A tropic, embodied, and situated theory of cognition. Topics in Cognitive Science, 6(3), 442–460. doi:10.1111/tops.12024.

    Article  Google Scholar 

  • Nuerk, H.-C., Moeller, K., & Willmes, K. (2015). Multi-digit number processing–Overview, conceptual clarifications, and language influences. In R. Cohen Kadosh & A. Dowker (Eds.), Oxford handbook of numerical cognition (pp. 106–139). Oxford: Oxford University Press.

    Google Scholar 

  • Opfer, J. E., & Thompson, C. A. (2006). Even early representations of numerical magnitude are spatially organized: Evidence for a directional magnitude bias in pre-reading preschoolers. In The Cognitive Science Society (Ed.), 28th Annual Conference of the Cognitive Science Society in Cooperation with the 5th International Conference of the Cognitive Science Society (pp. 671–677).

  • Patro, K., & Haman, M. (2012). The spatial-numerical congruity effect in preschoolers. Journal of Experimental Child Psychology, 111(3), 534–542. doi:10.1016/j.jecp.2011.09.006.

    Article  Google Scholar 

  • Patro, K., Nuerk, H.-C., & Cress, U. (2016). Mental number line in the preliterate brain: The role of early directional experiences. Child Development Perspectives, 10, 172–177. doi:10.1111/cdep.12179.

    Article  Google Scholar 

  • Patro, K., Nuerk, H.-C., Cress, U., & Haman, M. (2014). How number-space relationships are assessed before formal schooling: A taxonomy proposal. Frontiers in Psychology. doi:10.3389/fpsyg.2014.00419.

    Google Scholar 

  • Peeters, D., Degrande, T., Ebersbach, M., Verschaffel, L., & Luwel, K. (2016). Children’s use of number line estimation strategies. European Journal of Psychology of Education, 31, 117–134. doi:10.1007/s10212-015-0251-z.

    Article  Google Scholar 

  • Restle, F. (1970). Speed of adding and comparing numbers. Journal of Experimental Psychology, 83(2), 274–278. doi:10.1037/h0028573.

    Article  Google Scholar 

  • Shaki, S., & Fischer, M. H. (2014). Random walks on the mental number line. Experimental Brain Research, 232(1), 43–49. doi:10.1007/s00221-013-3718-7.

    Article  Google Scholar 

  • Siegler, R. S., & Opfer, J. E. (2003). The development of numerical estimation: Evidence for multiple representations of numerical quantity. Psychological Science, 14(3), 237–243. doi:10.1111/1467-9280.02438.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanja Dackermann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dackermann, T., Fischer, U., Nuerk, HC. et al. Applying embodied cognition: from useful interventions and their theoretical underpinnings to practical applications. ZDM Mathematics Education 49, 545–557 (2017). https://doi.org/10.1007/s11858-017-0850-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11858-017-0850-z

Keywords

Navigation