Skip to main content
Log in

Children’s use of number line estimation strategies

  • Published:
European Journal of Psychology of Education Aims and scope Submit manuscript

Abstract

This study tested whether second graders use benchmark-based strategies when solving a number line estimation (NLE) task. Participants were assigned to one of three conditions based on the availability of benchmarks provided on the number line. In the bounded condition, number lines were only bounded at both sides by 0 and 200, while the midpoint condition included an additional benchmark at the midpoint and children in the quartile condition were provided with a benchmark at every quartile. First, the inclusion of a midpoint resulted in more accurate estimates around the middle of the number line in the midpoint condition compared to the bounded and, surprisingly, also the quartile condition. Furthermore, the two additional benchmarks in the quartile condition did not yield better estimations around the first and third quartile, because children frequently relied on an erroneous representation of these benchmarks, leading to systematic estimation errors. Second, verbal strategy reports revealed that children in the midpoint condition relied more frequently on the benchmark at the midpoint of the number line compared to the bounded condition, confirming the accuracy data. Finally, the frequency of use of benchmark-based strategies correlated positively with mathematics achievement and tended to correlate positively also with estimation accuracy. In sum, this study is one of the first to provide systematic evidence for children’s use of benchmark-based estimation strategies in NLE with natural numbers and its relationship with children’s NLE performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. We coded the benchmarks as represented by the child even when misrepresented (e.g., when they thought the 25 % benchmark represented 100 instead of 50).

References

  • Ancker, J. S., & Kaufman, D. (2007). Rethinking health numeracy: a multidisciplinary literature review. Journal of the American Medical Informatics Association, 14, 713–721.

    Article  Google Scholar 

  • Ashcraft, M. H., & Moore, A. M. (2012). Cognitive processes of numerical estimation in children. Journal of Experimental Child Psychology, 111, 246–267.

    Article  Google Scholar 

  • Barth, H. C., & Paladino, A. M. (2011). The development of numerical estimation: evidence against a representational shift. Developmental Science, 14, 125–135.

    Article  Google Scholar 

  • Barth, H. C., Baron, A., Spelke, E., & Carey, S. (2009). Children’s multiplicative transformations of discrete and continuous quantities. Journal of Experimental Child Psychology, 103, 441–454.

    Article  Google Scholar 

  • Berteletti, I., Lucangeli, D., Piazza, M., Dehaene, S., & Zorzi, M. (2010). Numerical estimation in preschoolers. Developmental Psychology, 46, 545–551.

    Article  Google Scholar 

  • Booth, J. L., & Siegler, R. S. (2006). Developmental and individual differences in pure numerical estimation. Developmental Psychology, 41, 189–201.

    Article  Google Scholar 

  • Booth, J. L., & Siegler, R. S. (2008). Numerical magnitude representations influence arithmetic learning. Child Development, 79, 1016–1031.

    Article  Google Scholar 

  • Boyer, T. W., Levine, S. C., & Huttenlocher, J. (2008). Development of proportional reasoning: where young children go wrong. Developmental Psychology, 44, 1478–1490.

    Article  Google Scholar 

  • Bugden, S., & Ansari, D. (2011). Individual differences in children’s mathematical competence are related to the intentional but not automatic processing of Arabic numerals. Cognition, 118, 32–44.

    Article  Google Scholar 

  • Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: a practical information-theoretic approach (2nd ed.). New York: Springer.

    Google Scholar 

  • De Smedt, B., Verschaffel, L., & Ghesquière, P. (2009). The predictive value of numerical magnitude comparison for individual differences in mathematics achievement. Journal of Experimental Child Psychology, 103, 469–479.

    Article  Google Scholar 

  • Dehaene, S. (1997). The number sense. Oxford: Oxford University Press.

    Google Scholar 

  • Dudal, P. (2000). Leerlingvolgsysteem: Wiskunde—Toetsen 1-2-3. Basisboek [Student monitoring system: Mathematics—tests 1–2–3 manual]. Leuven: Garant.

    Google Scholar 

  • Ebersbach, M., Luwel, K., Frick, A., Onghena, P., & Verschaffel, L. (2008). The relationship between the shape of the mental number line and familiarity with numbers in 5- to 9-year old children: evidence for a segmented linear model. Journal of Experimental Child Psychology, 99, 1–17.

    Article  Google Scholar 

  • Ebersbach, M., Luwel, K., & Verschaffel, L. (2013). Comparing apples and pears in studies on magnitude estimates. Frontiers in Cognitive Science, 4, 1–6.

    Google Scholar 

  • Finnie, R., & Meng, R. (2001). Cognitive skills and the youth labour market. Applied Economics Letters, 8, 675–679.

    Article  Google Scholar 

  • Gandini, D., Lemaire, P., & Dufau, S. (2008). Older and young adults’ strategies in approximative quantification. Acta Psychologica, 129, 175–189.

    Article  Google Scholar 

  • Gandini, D., Ardiale, E., & Lemaire, P. (2010). Children’ strategies in approximate quantification. Current Psychology Letters: Behaviour, Brain, & Cognition, 26, 1–14.

    Google Scholar 

  • Gilmore, C. K., McCarthy, S. E., & Spelke, E. S. (2010). Non-symbolic arithmetic abilities and mathematics achievement in the first year of formal schooling. Cognition, 115, 394–406.

    Article  Google Scholar 

  • Hollands, J. G., & Dyre, B. (2000). Bias in proportion judgments: the cyclical power model. Psychological Review, 107, 500–524.

    Article  Google Scholar 

  • Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33, 159–174.

    Article  Google Scholar 

  • Link, T., Huber, S., Nuerk, H.-C., & Moeller, K. (2014). Unbounding the mental number line—new evidence on children’s spatial representation of numbers. Frontiers in Psychology, 4, 1–12.

    Article  Google Scholar 

  • Moeller, K., Pixner, S., Kaufmann, L., & Nuerk, H.-C. (2009). Children’s early mental number line: logarithmic or decomposed linear? Journal of Experimental Child Psychology, 103, 503–515.

    Article  Google Scholar 

  • Newman, R. S., & Berger, C. F. (1984). Children’s numerical estimation: flexibility in the use of counting. Journal of Educational Psychology, 76, 55–64.

    Article  Google Scholar 

  • Petitto, A. L. (1990). Development of number line and measurement concepts. Cognition and Instruction, 7, 55–78.

    Article  Google Scholar 

  • Ramani, G. B., Siegler, R. S., & Hitti, A. (2012). Taking it to the classroom: number board games as a small group learning activity. Journal of Educational Psychology, 104, 661–672.

    Article  Google Scholar 

  • Russo, J. E., Johnson, E. J., & Stephens, D. L. (1989). The validity of verbal protocols. Memory and Cognition, 17, 759–769.

    Article  Google Scholar 

  • Sasanguie, D., De Smedt, B., Defever, E., & Reynvoet, B. (2012). Association between basic numerical abilities and mathematics achievement. British Journal of Developmental Psychology, 30, 344–357.

    Article  Google Scholar 

  • Schneider, M., Grabner, R. H., & Paetsch, J. (2009). Mental number line, number line estimation, and mathematical school achievement: their interrelations in grades 5 and 6. Journal of Educational Psychology, 101, 359–372.

    Article  Google Scholar 

  • Siegler, R. S., & Booth, J. L. (2004). Development of numerical estimation in young children. Child Development, 75, 428–444.

    Article  Google Scholar 

  • Siegler, R. S., & Opfer, J. E. (2003). The development of numerical estimation: evidence for multiple representations of numerical quantity. Psychological Science, 14, 237–243.

    Article  Google Scholar 

  • Siegler, R. S., & Stern, E. (1998). Conscious and unconscious strategy discoveries: a microgenetic analysis. Journal of Experimental Psychology: General, 127, 377–397.

    Article  Google Scholar 

  • Siegler, R. S., & Thompson, C. A. (2014). Numerical landmarks are useful—except when they’re not. Journal of Experimental Child Psychology, 120, 39–58.

    Article  Google Scholar 

  • Siegler, R. S., Thompson, C. A., & Opfer, J. E. (2009). The logarithmic-to-linear shift: one learning sequence, many tasks, many time scales. Mind, Brain, and Education, 3, 143–150.

    Article  Google Scholar 

  • Slusser, E. B., Santiago, R. T., & Barth, H. C. (2013). Developmental change in numerical estimation. Journal of Experimental Psychology: General, 142, 193–208.

    Article  Google Scholar 

  • Thompson, C. A., & Opfer, J. E. (2010). How 15 hundred is like 15 cherries: effect of progressive alignment on representational changes in numerical cognition. Child Development, 81, 1768–1786.

    Article  Google Scholar 

  • Torbeyns, J., De Smedt, B., Ghesquière, P., & Verschaffel, L. (2009). Acquisition and use of shortcut strategies by traditionally schooled children. Educational Studies in Mathematics, 71, 1–17.

    Article  Google Scholar 

  • Vermeulen, J. A., Scheltens, F., & Eggen, T. J. H. M., (2015). Strategie-identificatie met de lege getallenlijn: Een vergelijking tussen tablet en papier [Strategy identification on the empty number line: a comparison between tablets and paper]. Pedagogische Studiën, 92, 39--54.

  • White, S. L. J., & Szucs, D. (2012). Representational change and strategy use in children’s number line estimation during the first years of primary school. Behavioral and Brain Functions, 8, 1–12.

    Article  Google Scholar 

  • Whyte, J. C., & Bull, R. (2008). Number games, magnitude representation, and basic number skills in preschoolers. Developmental Psychology, 44, 588–596.

    Article  Google Scholar 

Download references

Acknowledgments

The conduct of this study was supported by grant GOA 2012/010 of the Research Fund KU Leuven, Belgium, and by grant DFG: EB462/1-1 of the German Research Foundation to the fourth author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Peeters.

Additional information

Dominique Peeters. Centre for Instructional Psychology and Technology, KU Leuven, Dekenstraat 2, box 3773, 3000 Leuven, Belgium. E-mail: dominique.peeters@ppw.kuleuven.be

Current themes of research:

Number line estimation. Numerical cognition. Strategy development.

Tine Degrande. Tine Degrande. Centre for Instructional Psychology and Technology, KU Leuven, Dekenstraat 2, box 3773, 3000 Leuven, Belgium.

Current themes of research:

Proportional reasoning. Additive reasoning. Cognitive development. Mathematics. Primary education.

Most relevant publications in the field of Psychology of Education:

Degrande, T., Verschaffel, L., Van Dooren, W. (2014). How do Flemish children solve ‘Greek’ wordproblems? On children’s quantitative analogical reasoning in mathematically neutral word problems. Mediterranean Journal for Research in Mathematics Education, 13(1--2): 57--74.

Mirjam Ebersbach. Centre for Instructional Psychology and Technology, KU Leuven, Dekenstraat 2, box 3773, 3000 Leuven, Belgium; Institut für Psychologie, Universität Kassel, Holländische Str. 36-38, 34127 Kassel, Germany.

Current themes of research:

Cognitive development. Development of information processing. Mathematical knowledge. Implicit and explicit knowledge. Embodiment.

Most relevant publications in the field of Psychology of Education:

Ebersbach, M., & Erz, P. (2014). Symbolic versus non-symbolic magnitude estimations among children and adults. Journal of Experimental Child Development, 128, 52--68. doi:10.1016/j.jecp.2014.06.005.

Ebersbach, M., Luwel, K., & Verschaffel, L. (2014). Further evidence for a spatial-numerical association in children before formal schooling. Experimental Psychology, 18, 1--7. doi:10.1027/1618-3169/a000250.

Ebersbach, M., Luwel, K., Frick, A., Onghena, P., & Verschaffel, L. (2008). The relationship between the shape of the mental number line and familiarity with numbers in 5- to 9-year old children: Evidence for a segmented linear model. Journal of Experimental Child Psychology, 99, 1--17. doi:10.1016/j.jecp.2007.08.006.

Ebersbach, M., & Resing, W. C. M. (2008). Implicit and explicit knowledge of linear and exponential growth in 5- and 9-year-olds. Journal of Cognition and Development, 9, 286--309. doi:10.1080/15248370802247962.

Lieven Verschaffel. Centre for Instructional Psychology and Technology, KU Leuven, Dekenstraat 2, box 3773, 3000 Leuven, Belgium.

Current themes of research:

Psychology of mathematics education. Number sense. Estimation. Mental and written arithmetic. Arithmetic word problem solving. Rational number knowledge.

Most relevant publications in the field of Psychology of Education:

Verschaffel, L., Luwel, K., Torbeyns, J., & Van Dooren, W. (2009). Conceptualizing, investigating, and enhancing adaptive expertise in elementary mathematics education. European Journal of Psychology of Education, 24, 335--359.

Dewolf, T., Van Dooren, W., & Verschaffel, L. (2011). Upper elementary school children’s understanding and solution of a quantitative word problem inside and outside the mathematics class. Learning and Instruction, 21, 770--780.

Fernández, C., Llinares, S., Van Dooren, W., De Bock, D., Verschaffel, L. (2012). The development of students’ use of additive and proportional methods along primary and secondary school. European Journal of Psychology of Education, 27, 421--438.

Obersteiner, A., Van Dooren, W., Van Hoof, J., & Verschaffel, L. (2013). The natural number bias and magnitude representation in fraction comparison by expert mathematicians. Learning and Instruction, 28, 64--72.

Linsen, S., Verschaffel, L., Reynvoet, B., & De Smedt, B. (2015). The association between numerical magnitude processing and mental versus algorithmic multi-digit subtraction in children. Learning and Instruction, 35, 42--50.

Koen Luwel. Centre for Instructional Psychology and Technology, KU Leuven, Dekenstraat 2, box 3773, 3000 Leuven, Belgium; Centre for Educational Research and Development, KU Leuven—Campus Brussels, Warmoesberg 26, 1000 Brussels, Belgium.

Current themes of research:

Strategy choice and strategy development. Estimation skills. Numerical and mathematical cognition. Number sense.

Most relevant publications in the field of Psychology of Education:

Luwel, K., Foustana, A., Papadatos, Y., & Verschaffel, L. (2011). The role of intelligence and feedback in children’s strategy competence. Journal of Experimental Child Psychology, 108, 61--76.

Verschaffel, L., Luwel, K., Torbeyns, J., & Van Dooren, W. (2009). Conceptualizing, investigating, and enhancing adaptive expertise in elementary mathematics education. European Journal of Psychology of Education, 24, 335--359.

Luwel, K., & Verschaffel, L. (2008). Estimation of ‘real’ numerosities in elementary school children. European Journal of Psychology of Education, 23, 319--338.

Ebersbach, M., Luwel, K., Frick, A., Onghena, P., & Verschaffel, L. (2008). The relationship between the shape of the mental number line and familiarity with numbers in 5- to 9-year old children: Evidence for a segmented linear model. Journal of Experimental Child Psychology, 99, 1--17.

Luwel, K., Siegler, R. S., & Verschaffel, L. (2008). A microgenetic study of insightful problem solving. Journal of Experimental Child Psychology, 99, 210--232.

Dominique Peeters and Tine Degrande contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peeters, D., Degrande, T., Ebersbach, M. et al. Children’s use of number line estimation strategies. Eur J Psychol Educ 31, 117–134 (2016). https://doi.org/10.1007/s10212-015-0251-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10212-015-0251-z

Keywords

Navigation