Skip to main content
Log in

Effect of Nonequilibrium Decarburization on Inclusion Transfer During Single Snorkel RH Vacuum Refining

  • Computational Modeling of Metallurgical Furnaces
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Single snorkel Rheinstahl–Heraeus (SSRH) has shown outstanding performance in inclusion removal for decades. By coupling the unsteady CO-Ar-liquid steel flow and the nonequilibrium decarburization process, the inclusion mass/population conservation model has been developed to investigate the inclusion transfer behavior of SSRH, and the effect of the bubble slip velocity on the inclusion convection is introduced into the mathematical model in this paper. The result shows that the stirring and the transport effect of CO bubbles can improve the inclusion transfer kinetic condition, and promote the inclusion convection and removal process. In the first minute during SSRH refining, the average inclusion volume concentration and the average inclusion number density in the unsteady CO-Ar-liquid steel flow are 13.63% and 10.85%, respectively, less than those in the steady Ar-liquid steel flow. In addition, due to the greater turbulent collision rate, the average inclusion characteristic radius increases from 1.44 μm (Ar-liquid steel) to 1.56 μm (CO-Ar-liquid steel).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

\(C_{{\text{V}}}\) :

Inclusion volume concentration, –

\(D_{{{\text{eff}}}}\) :

Effective diffusion coefficient, m2/s

\(\vec{F}_{{C_{{\text{V}}} }}\) :

Transport flux of inclusion volume concentration, m/s

\(\vec{F}_{{\text{N}}}\) :

Transport flux of inclusion number density, m2·s1

\(\vec{g}\) :

Gravitational acceleration, m/s2

M :

Molar mass, g/mol

\(\vec{M}_{{\text{t}}}\) :

Interphase momentum transfer, N/m3

N :

Inclusion number density, m3

\(n_{\text{g}}\) :

Number of bubbles, –

\(\vec{n}\) :

Normal vector, –

\(P_{{{\text{gp}}}}\) :

Attachment probability, –

p :

Pressure, Pa

Re:

Reynolds number, –

r :

Radius, m

r * :

Inclusion characteristic radius, m

S :

Source term, –

t :

Time, s

\(\vec{u}\) :

Velocity, m/s

\(V\) :

Volume, m3

\(w\) :

Mass concentration, –

\(\alpha\) :

Volume fraction, –

\(\alpha_{{{\text{coa}}}}\) :

Inclusion coagulation coefficient, –

\(\beta\) :

Collision rate, m3/s

\(\varepsilon\) :

Turbulent dissipation rate, m2/s3

\(\mu\) :

Viscosity, Pa·s

\(\nu_{{\text{s}}}\) :

Kinematic viscosity of liquid steel, m2/s

\(\rho\) :

Density, kg/m3

C, O:

Dissolved carbon and dissolved oxygen

m:

Mixture

g:

Gas

i, j :

Correlation between inclusion with radius \(r_{i}\) and radius \(r_{j}\)

p:

Inclusion particle

s:

Liquid steel

References

  1. G.J. Chen and S.P. He, JOM 71, 4206 (2019).

    Article  Google Scholar 

  2. Q. Wang, Y. Liu, A. Huang, W. Yan, H.Z. Gu, and G.Q. Li, Powder Technol. 367, 358 (2020).

    Article  Google Scholar 

  3. L.F. Zhang and F. Li, JOM 66, 1227 (2014).

    Article  Google Scholar 

  4. W. Liu, S.F. Yang, J.S. Li, and H.B. Yang, JOM 70, 2877 (2018).

    Article  Google Scholar 

  5. W.X. Dai, G.G. Cheng, S.J. Li, Y. Huang, G.L. Zhang, Y.L. Qiu, and W.F. Zhu, ISIJ Int. 59, 1214 (2019).

    Article  Google Scholar 

  6. S.F. Chen, H. Lei, M. Wang, B. Yang, W.X. Dou, L.S. Chang, and H.W. Zhang, Int. J. Heat Mass Transf. 146, 118857 (2020).

    Article  Google Scholar 

  7. W.X. Dai, G.G. Cheng, G.L. Zhang, Z.D. Huo, P.X. Lv, Y.L. Qiu, and W.F. Zhu, Metall. Mater. Trans. B 51, 611 (2020).

    Article  Google Scholar 

  8. S. Kitamura, H. Aoki, K. Miyamoto, H. Furuta, K. Yamashita, and K. Yonezawa, ISIJ Int. 40, 455 (2000).

    Article  Google Scholar 

  9. Y.X. Zhang, C. Chen, W.M. Lin, Y.C. Yu, D.Y. E, and S.B. Wang, Steel Res. Int., 91, 2000022 (2020).

  10. S.F. Chen, H. Lei, M. Wang, C.Y. Ding, W.X. Dou, and L.S. Chang, Int. J. Numer. Methods Heat Fluid Flow 31, 2715 (2021).

    Article  Google Scholar 

  11. L.F. Zhang, JOM 65, 1138 (2013).

    Article  Google Scholar 

  12. M. Haustein, A. Asad, and R. Schwarze, JOM 70, 2943 (2018).

    Article  Google Scholar 

  13. B. Wang, B.H. Zhu, and B. Zhang, JOM 73, 2920 (2021).

    Article  Google Scholar 

  14. W.Y. Kim, G.J. Nam, and S.Y. Kim, Metall. Mater. Trans. B 52, 1508 (2021).

    Article  Google Scholar 

  15. Y. Miki and B.G. Thomas, Metall. Mater. Trans. B 30, 639 (1999).

    Article  Google Scholar 

  16. S. Lopez-ramirez, R.D. Morales, J. De, J. Barreto-Sandoval, and R.D. Morales, Metall. Mater. Trans. B 32, 615 (2001).

    Article  Google Scholar 

  17. M. Javurek, P. Gittler, R. Rossler, B. Kaufmann, and H. Presslinger, Steel Res. Int. 76, 64 (2005).

    Article  Google Scholar 

  18. W.T. Lou and M.Y. Zhu, Metall. Mater. Trans. B 44, 762 (2013).

    Article  Google Scholar 

  19. K. Shirabe and J. Szekely, Trans. ISIJ 23, 465 (1983).

    Article  Google Scholar 

  20. T. Nakaoka, S. Taniguchi, K. Matsumoto, and S.T. Johansen, ISIJ Int. 41, 1103 (2001).

    Article  Google Scholar 

  21. G.J. Chen, S.P. He, Y.G. Li, and Q. Wang, Ind. Eng. Chem. Res. 55, 7030 (2016).

    Article  Google Scholar 

  22. D.Q. Geng, J.X. Zheng, K. Wang, P. Wang, R.Q. Liang, H.T. Liu, H. Lei, and J.C. He, Metall. Mater. Trans. B 46, 1484 (2015).

    Article  Google Scholar 

  23. L.F. Zhang, S. Taniguchi, and K.K. Cai, Metall. Mater. Trans. B 31, 253 (2000).

    Article  Google Scholar 

  24. B. Yang, H. Lei, Q. Bi, Y.Y. Xiao, and Y. Zhao, JOM 70, 2950t (2018).

    Article  Google Scholar 

  25. H. Lei, Y. Zhao, and D.Q. Geng, ISIJ Int. 54, 1629 (2014).

    Article  Google Scholar 

  26. D.Q. Geng, H. Lei, and J.C. He, High Temp. Mater. Proc. 36, 523 (2017).

    Article  Google Scholar 

  27. T. Yoshioka, T. Ideguchi, A. Karasev, Y. Ohba, and P.G. Jonsson, Steel Res. Int. 89, 1700287 (2018).

    Article  Google Scholar 

  28. M. Gisselbrecht, J.S. Kroll-Rabotin, and J.P. Bellot, Metall. Res. Technol. 116, 512 (2019).

    Article  Google Scholar 

  29. O. Adaba, R.J. O’Malley, and L.N. Bartlett, Metall. Mater. Trans. B 51, 1679 (2020).

    Article  Google Scholar 

  30. M. Wang, Y.P. Bao, H. Cui, H.J. Wu, and W.S. Wu, ISIJ Int. 50, 1606 (2010).

    Article  Google Scholar 

  31. Y.J. Kwon, J. Zhang, and H.G. Lee, ISIJ Int. 46, 257 (2006).

    Article  Google Scholar 

  32. Y.J. Kwon, J. Zhang, and H.G. Lee, ISIJ Int. 48, 891 (2008).

    Article  Google Scholar 

  33. P.G. Saffman and J.S. Turner, J. Fluid Mech. 1, 16 (1956).

    Article  Google Scholar 

  34. U. Lindborg and K. Torssell, Trans. Metall. Soc. AIME 242, 94 (1968).

    Google Scholar 

  35. K. Higashitani, R. Ogawa, G. Hosokawa, and Y. Matsuno, J. Chem. Eng. Jpn. 15, 299 (1982).

    Article  Google Scholar 

  36. H. Tozawa, Y. Kato, K. Sorimachi, and T. Nakanishi, ISIJ Int. 39, 426 (1999).

    Article  Google Scholar 

  37. H.T. Ling, L.F. Zhang, and H. Li, Metall. Mater. Trans. B 47, 2991 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China and Shanghai Baosteel (No. U1460108) and the Fundamental Research Funds for the Central Universities (No. N2109003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Lei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Lei, H., Li, Q. et al. Effect of Nonequilibrium Decarburization on Inclusion Transfer During Single Snorkel RH Vacuum Refining. JOM 74, 1578–1587 (2022). https://doi.org/10.1007/s11837-022-05182-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05182-7

Navigation