Skip to main content
Log in

Application of Inhomogeneous Discrete Method to the Simulation of Transport, Agglomeration, and Removal of Oxide Inclusions in a Gas-Stirred Ladle

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The behavior of oxide inclusions in a gas-stirred ladle is characterized by a wide inclusion size distribution that evolves continuously owing to their transport, aggregation, and removal. Due to the high temperature and opacity of the ladle, a computational fluid dynamics-based method coupled with a suitable population balance algorithm is required to analyze this evolution process. In this work, the inhomogeneous discrete method is applied to solve the population balance equations associated with the behavior of Al2O3 inclusions in a gas-stirred ladle, and the effect of the number of subphases is evaluated. The calculated flow and mixing characteristics of molten steel and the size distribution of inclusions in the ladle agree well with measured values reported in literature. The results indicate that the inclusion size distribution for one, two, and three subphases differs from that obtained for four and five subphases, while the refinement from four to five subphases produces a similar distribution, hence use of the inhomogeneous discrete method with four subphases is suggested to study the behavior of inclusions in a gas-stirred ladle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L. Zhang and S. Taniguchi, Int. Mater. Rev. 45, 59 (2000).

    Article  Google Scholar 

  2. H. Ling and L. Zhang, JOM 65, 1155 (2013).

    Article  Google Scholar 

  3. J.P. Bellot, J.S. Kroll-Rabotin, M. Gisselbrecht, M. Joishi, A. Saxena, S. Sanders, and A. Jardy, Materials 11, 1179 (2018).

    Article  Google Scholar 

  4. A. Huang, H. Harmuth, M. Doletschek, S. Vollmann, and X. Feng, Steel Res. Int. 86, 1447 (2015).

    Article  Google Scholar 

  5. Q. Cao and N. Laurentiu, JOM 70, 2071 (2018).

    Article  Google Scholar 

  6. M. Haustein, A. Asad, and R. Schwarze, JOM 70, 2943 (2018).

    Article  Google Scholar 

  7. Q. Cao and L. Nastac, Ironmak. Steelmak. 45, 984 (2018).

    Article  Google Scholar 

  8. W. Liu, S.F. Yang, J.S. Li, and H.B. Yang, JOM 70, 2877 (2018).

    Article  Google Scholar 

  9. H. Duan, P.R. Scheller, Y. Ren, and L. Zhang, JOM 71, 69 (2019).

    Article  Google Scholar 

  10. D. Sheng, M. Söder, P. Jönsson, and L. Jonsson, Scand. J. Metall. 31, 134 (2002).

    Article  Google Scholar 

  11. M. Hallberg, P. Jönsson, and L. Jonsson, Scand. J. Metall. 34, 41 (2005).

    Article  Google Scholar 

  12. L. Wang, Q. Zhang, C. Deng, and Z. Li, ISIJ Int. 45, 1138 (2005).

    Article  Google Scholar 

  13. L. Wang, Q. Zhang, S. Peng, and Z. Li, ISIJ Int. 45, 331 (2005).

    Article  Google Scholar 

  14. Y.J. Kwon, J. Zhang, and H.G. Lee, ISIJ Int. 48, 891 (2008).

    Article  Google Scholar 

  15. V.D. Felice, I.L.A. Daoud, B. Dussoubs, A. Jardy, and J.P. Bellot, ISIJ Int. 52, 1273 (2012).

    Article  Google Scholar 

  16. J.P. Bellot, V. Descotes, and A. Jardy, JOM 65, 1164 (2013).

    Article  Google Scholar 

  17. J.P. Bellot, V. Descotes, B. Dussoubs, A. Jardy, and S. Hans, Metall. Mater. Trans. B 45, 13 (2014).

    Article  Google Scholar 

  18. W. Lou and M. Zhu, Metall. Mater. Trans. B 44, 762 (2013).

    Article  Google Scholar 

  19. W. Lou and M. Zhu, ISIJ Int. 54, 9 (2014).

    Article  Google Scholar 

  20. J.D. Lister, D.J. Smit, and M.J. Hounslow, AIChE J. 41, 591 (1995).

    Article  Google Scholar 

  21. L. Claudotte, N. Rimbert, P. Gardin, M. Simonnet, J. Lehmann, and B. Oesterlé, Steel Res. Int. 81, 630 (2010).

    Article  Google Scholar 

  22. L. Claudotte, N. Rimbert, P. Gardin, M. Simonnet, J. Lehmann, and B. Oesterle, AIChE J. 56, 2347 (2010).

    Google Scholar 

  23. N. Rimbert, L. Claudotte, P. Gardin, and J. Lehmann, Ind. Eng. Chem. Res. 53, 8630 (2014).

    Article  Google Scholar 

  24. R. McGraw, Aerosol Sci. Technol. 27, 255 (1997).

    Article  Google Scholar 

  25. I.L.A. Daoud, N. Rimbert, A. Jardy, B. Oesterlé, S. Hans, and J.P. Bellot, Adv. Eng. Mater. 13, 543 (2011).

    Article  Google Scholar 

  26. E. Krepper, D. Lucas, T. Frank, H.M. Prasser, and P.J. Zwart, Nucl. Eng. Des. 238, 1690 (2008).

    Article  Google Scholar 

  27. T. Frank, P.J. Zwart, J.M. Shi, E. Krepper, D. Lucas, and U. Rohde, Inhomogeneous MUSIG Model–a Population Balance Approach for Polydispersed Bubbly Flows. Presented at the International Conference on Nuclear Energy for New Europe, Bled, Slovenia, 2005.

  28. Y. Liao, R. Rzehak, D. Lucas, and E. Krepper, Chem. Eng. Sci. 122, 336 (2015).

    Article  Google Scholar 

  29. U. Lindborg, Trans. Metall. Soc. AIME 242, 94 (1968).

    Google Scholar 

  30. L.I. Zaichik, O. Simonin, and V.M. Alipchenkov, Int. J. Heat Mass Trans. 53, 1613 (2010).

    Article  Google Scholar 

  31. K. Higashitani, K. Yamauchi, Y. Matsuno, and G. Hosokawa, Fluid J. Chem. Eng. Jpn. 16, 299 (1983).

    Article  Google Scholar 

  32. F. Oeters, Metallurgy of Steelmaking (Dusseldorf: Veriog Stahleisen mbH, 1994).

    Google Scholar 

  33. L. Zhang, S. Taniguchi, and K. Cai, Metall. Mater. Trans. B 31, 253 (2000).

    Article  Google Scholar 

  34. L. Wang, H.G. Lee, and P. Hayes, ISIJ Int. 36, 7 (1996).

    Article  Google Scholar 

  35. R.H. Yoon and G.H. Luttrell, Miner. Process. Extrac. Metall. Rev. 5, 101 (1989).

    Article  Google Scholar 

  36. W.J. Trahar, Int. J. Miner. Process. 8, 289 (1981).

    Article  Google Scholar 

  37. K. Krishnapisharody and G.A. Irons, Metall. Mater. Trans. B 46, 191 (2015).

    Article  Google Scholar 

  38. L. Schiller and Z. Naumann, Zeit. Ver. Deutsch. Ing. 77, 318 (1935).

    Google Scholar 

  39. O. Simonin and P.L. Viollet, Phenomena in Multiphase Flows (Washington: Hemisphere, 1990).

    Google Scholar 

  40. R. Bel-Fdhila and O. Simonin, Eulerian prediction of a turbulent bubbly flow downstream of a sudden pipe expansion, Proceedings 5th Workshop on Two-Phase Flow Predictions, 1992.

  41. S.E. Elghobashi and T.W. Abou-Arab, Phys. Fluids 26, 931 (1983).

    Article  Google Scholar 

  42. B.E. Launder and D.B. Spalding, Lectures in Mathematical Models of Turbulence (London: Academic, 1972).

    MATH  Google Scholar 

  43. J. Aoki, B.G. Thomas, J. Peter, K.D. Peaslee, Assoc. Iron Steel Technology, Warrendale, PA, 2004.

  44. Y. Miyashita and K. Nishikawa, Trans. ISIJ 8, 181 (1968).

    Google Scholar 

  45. S. Joo and R.I.L. Guthrie, Metall. Mater. Trans. B 23, 765 (1992).

    Article  Google Scholar 

  46. Y. Miki and B.G. Thomas, Metall. Mater. Trans. B 30, 639 (1999).

    Article  Google Scholar 

  47. M. Haustein, A. Asad, and R. Schwarze, JOM 70, 2943 (2018).

    Article  Google Scholar 

  48. K. Wasai, K. Mukai, and A. Miyanaga, ISIJ Int. 42, 459 (2002).

    Article  Google Scholar 

  49. M.A.T. Andersson, L.T.I. Jonsson, and P.G. Jönsson, ISIJ Int. 40, 1080 (2000).

    Article  Google Scholar 

  50. B. Coletti, B. Gommers, C. Vercruyssen, B. Blanpain, P. Wollants, and F. Haers, Ironmak. Steelmak. 30, 101 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support from the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJQN201801413) and the Science and Technology Program of Fuling Science and Technology Commission (Grant No. FLKJ, 2018BBA3043). The Guangxi Natural Science Foundation (Grant No. 2017GXNSFBA198128).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengping He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., He, S. Application of Inhomogeneous Discrete Method to the Simulation of Transport, Agglomeration, and Removal of Oxide Inclusions in a Gas-Stirred Ladle. JOM 71, 4206–4214 (2019). https://doi.org/10.1007/s11837-019-03691-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03691-6

Navigation