Skip to main content
Log in

Collision of Micro-sized Non-metallic Inclusions in Liquid Steel Flows: A Computational Study

  • Multiphase Flows in Materials Processing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The quality of steel is limited, among others, by the contained non-metallic inclusions. A key factor in this context is the growth of micro-sized indigenous inclusions. Those are assumed to form larger inclusions or clusters by collision in the turbulent melt flow. In this study, a numerical model is established to investigate the collision probability of spherical and clustered non-metallic inclusions in steel by discrete particle simulations. A strong dependence of the agglomeration probability from the particle sizes, form and shear rate in the process is observed. Larger particles are hampered to coagulate because of the significant influence of the lubrication force. Thus, the maximum particle size of spherical particles is limited, while clustered agglomerates can still grow. From the simulation results, models for the determination of the collision coefficient are deduced for spherical particles and non-spherical particle clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L. Zhang, B.G. Thomas, in XXIV National Steelmaking Symposium, vol. 26 (Morelia, Mich, Mexico, 2003), p. 42.

  2. H. Yu, C. Ji, B. Chen, C. Wang, Y. Zhang, J. Iron Steel Res. Int. 22, 17–23 (2015).

    Article  Google Scholar 

  3. L. Zhang, JOM 65, 1138–1144 (2013).

    Article  Google Scholar 

  4. Y. Miki, B.G. Thomas, Metall. Mater. Trans. B 30, 639–654 (1999).

    Article  Google Scholar 

  5. H. Tozawa, Y. Kato, K. Sorimachi, T. Nakanishi, ISIJ Int. 39, 426–434 (1999).

    Article  Google Scholar 

  6. H. Lei, D. Geng, J. He, ISIJ Int. 49, 1575–1582 (2009).

    Article  Google Scholar 

  7. H. Lei, J. He, J. Mater. Sci. Technol. 28, 642–646 (2012).

    Article  Google Scholar 

  8. H. Ling, L. Zhang, H. Li, Metall. Mater. Trans. B 47, 2991–3012 (2016).

    Article  Google Scholar 

  9. P.G. Saffman, J.S. Turner, J. Fluid Mech. 1, 16 (1956).

    Article  Google Scholar 

  10. K. Higashitani, R. Ogawa, G. Hosokawa, Y. Matsuno, J. Chem. Eng. Jpn. 15, 299–304 (1982).

    Article  Google Scholar 

  11. M. Cournil, F. Gruy, P. Gardin, H. Saint-Raymond, Chem. Eng. Process. 45, 586–597 (2006).

    Article  Google Scholar 

  12. L. Zheng, A. Malfliet, P. Wollants, B. Blanpain, M. Guo, ISIJ Int. 56, 926–935 (2016).

    Article  Google Scholar 

  13. H. Yin, H. Shibata, T. Emi, M. Suzuki, ISIJ Int. 37, 936–945 (1997).

    Article  Google Scholar 

  14. R. Mittal, G. Iaccarino, Annu. Rev. Fluid Mech. 37, 239–261 (2005).

    Article  Google Scholar 

  15. H. Hu, N.A. Patankar, M.Y. Zhu, J. Comput. Phys. 169, 427–462 (2001).

    Article  MathSciNet  Google Scholar 

  16. K. Sasai, ISIJ Int. 56, 1013–1022 (2016).

    Article  Google Scholar 

  17. C. Crowe, M. Sommerfeld, Y. Tsuji, Multiphase Flows with Droplets and Particles (CRC Press, Boca Raton, FL, 2012).

    Google Scholar 

  18. N. Martys, J. Rheol. 49, 401–424 (2005).

    Article  Google Scholar 

  19. J. Israelachvili, Intermolecular and Surface Forces, 3rd edn. (Academic Press, Burlington, 2011), p. 256.

    Google Scholar 

  20. V. Smilauer, C. Emanuele, B. Chareyre, S. Dorofeenko, J. Duriez, N. Dyck, J. Elias, B. Er, A. Eulitz, A. Gladky, N. Guo, C. Jakob, F. Kneib, J. Kozicki, D. Marzougui, R. Maurin, C. Modenese, L. Scholtes, L. Sibille, J. Stransky, T. Sweijen, K. Thoeni, and C. Yuan, Yade Documentation, 2nd edn. The Yade Project (2015). https://doi.org/10.5281/zenodo.34073

  21. M v Smoluchowski, Z. Phys. Chem. 29U, 129–168 (1918)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the German Research Foundation (DFG) for supporting the scientific work in terms of the Collaborative Research Centre “Multi-Functional Filters for Metal Melt Filtration—A Contribution towards Zero Defect Materials” (CRC 920, Subproject B06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Haustein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haustein, M., Asad, A. & Schwarze, R. Collision of Micro-sized Non-metallic Inclusions in Liquid Steel Flows: A Computational Study. JOM 70, 2943–2949 (2018). https://doi.org/10.1007/s11837-018-3113-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3113-8

Navigation