Skip to main content
Log in

Modelling Effect of Circulation Flow Rate on Inclusion Removal in RH Degasser

  • Metallurgy and Metal Working
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Based on the similarity principles, a 1: 7 scale physical model was established to study the behavior of molten steel flow and inclusion removal in a 145 t Rheinsahl-Heraeus (RH) degasser. On the basis of the quantitative measurements of the circulation flow rate and inclusion removal under various lifting gas flow rates, the effect of circulation flow rate on inclusion removal was investigated in the RH degasser. The inclusion removal rate shows the trend of first increase and then decrease twice with increasing the circulation flow rate when the circulation flow rates are smaller than 104.7 L/min. Whereas, the inclusion removal rate increases again with the further increase in circulation flow rate when the circulation flow rate is larger than 104.7 L/min. At lower circulation flow rates, inclusions are mainly removed by Stokes flotation to the slag/steel interface after inclusions are transferred near the slag/steel interface by the circulation flow. At higher circulation flow rates, the collision and aggregation of inclusions improves the inclusion removal efficiency. With the further increase in the circulation flow rate, inclusions are mainly removed by following the turbulent fluctuation (turbulent diffusion) to the slag/steel interface after inclusions are transferred near the slag/steel interface by the circulation flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Q. Geng, H. Lei, J. C. He, Metall. Mater. Trans. B 41 (2010) 234–247.

    Article  Google Scholar 

  2. L. Lin, Y. P. Bao, F. Yue, L. Q. Zhang, H. L. Ou, Int. J. Miner. Metall. Mater. 19 (2012) 483–489.

    Article  Google Scholar 

  3. X. G. Ai, Y. P. Bao, H. J. Wu, X. Ma, N. Jia, Special Steel 30 (2009) No. 3, 1–3.

    Google Scholar 

  4. P. A. Kishan, S. K. Dash, ISIJ Int. 49 (2009) 495–504.

    Article  Google Scholar 

  5. J. H. Wei, H. T. Hu, Ironmak. Steelmak. 32 (2005) 427–434.

    Article  Google Scholar 

  6. M. Y. Zhu, Y. L. Wu, C. W. Du, Z. Z. Huang, J. Iron Steel Res. Int. 12 (2005) No. 2, 20–24.

    Google Scholar 

  7. K. Nakanishi, T. Fujii, J. Szekely, Ironmak. Steelmak. 2 (1975) 193–197.

    Google Scholar 

  8. T. Kuwabara, K. Umezawa, K. Mori, H. Watanabe, Trans. ISIJ 28 (1988) 305–314.

    Article  Google Scholar 

  9. D. Q. Geng, H. Lei, J. C. He, Ironmak. Steelmak. 39 (2012) 431–438.

    Article  Google Scholar 

  10. S. Inoue, Y. Furuno, T. Usui, S. Miyahara, ISIJ Int. 32 (1992) 120–125.

    Article  Google Scholar 

  11. M. Takahashi, H. Matsumoto, T. Saito, ISIJ Int. 35 (1995) 1452–1458.

    Article  Google Scholar 

  12. M. A. Van Ende, Y. M. Kim, M. K. Cho, J. Choi, I. H. Jung, Metall. Mater. Trans. B 42 (2011) 477–489.

    Article  Google Scholar 

  13. C. W. Li, G. G. Cheng, X. H. Wang, G. S. Zhu, A. M. Cui, J. Iron Steel Res. Int. 19 (2012) No. 5, 23–28.

    Article  Google Scholar 

  14. S. K. Ajmani, S. K. Dash, S. Chandra, C. Bhanu, ISIJ Int. 44 (2004) 82–90.

    Article  Google Scholar 

  15. C. A. da Silva, I. A. da Silva, E. M. de Castro Martins, V. Seshadri, C. A. Perim, G. A. Vargas Filho, Ironmak. Steelmak. 31 (2004) 37–42.

    Article  Google Scholar 

  16. F. Ahrenhold, W. Pluschkell, Steel Res. Int. 70 (1999) 314–318.

    Article  Google Scholar 

  17. Y. Miki, B. G. Thomas, A. Denissov, Y. Shimada, Iron and Steelmaker 24 (1997) No. 8, 31–38.

    Google Scholar 

  18. C. J. Treadgold, Ironmak. Steelmak. 30 (2003) 120–124.

    Article  Google Scholar 

  19. V. Tusset, C. Marique, H. Mathy, B. Gommers, N. Van Poeck, Ironmak. Steelmak. 30 (2003) 142–145.

    Article  Google Scholar 

  20. X. G. Ai, Y. P. Bao, H. J. Wu, F. Yue, H. Cui, Iron and Steel 44 (2009) No. 7, 43–46.

    Google Scholar 

  21. H. F. Shu, L. Liu, X. H. Liu, X. F. Zhang, J. Iron Steel Res. Int. 18 (2011) Suppl. 2, 347–351.

    Google Scholar 

  22. S. G. Zheng, M. Y. Zhu, S. S. Pan, Acta Metall. Sin. 42 (2006) 657–661.

    Google Scholar 

  23. Y. G. Chi, Q. Z. Shen, Z. H. Wu, M. Y. Peng, Z. H. Xiao, Special Steel 32 (2011) No. 4, 10–13.

    Google Scholar 

  24. S. G. Zheng, M. Y. Zhu, Steel Res. Int. 79 (2008) 685–690.

    Article  Google Scholar 

  25. S. G. Zheng, M. Y. Zhu, Y. Wang, J. Northeast. Univ. 31 (2010) 677–680.

    Google Scholar 

  26. W. Zheng, X. Shen, Y. C. Yang, G. Q. Li, K. Lu, H. Tu, C. Y. Zhu, Steelmaking 29 (2013) No. 5, 38–42.

    Google Scholar 

  27. T. Qu, M. Jiang, C. Liu, Y. Komizo, Steel Res. Int. 81 (2010) 434–445.

    Article  Google Scholar 

  28. M. Y. Zhu, Z. Q. Xiao, Maths-physical Modeling of Steel Refining Process, Metallurgical Industry Press, Beijing, 1998.

    Google Scholar 

  29. Y. Sahai, T. Emi, ISIJ Int. 36 (1996) 1166–1173.

    Article  Google Scholar 

  30. D. Q. Geng, H. Lei, J. C. He, J. Iron Steel Res. 21 (2009) No. 12, 10–13.

    Google Scholar 

  31. T. Murai, H. Matsuno, E. Sakurai, H. Kawashima, Tetsuto-Hagané 84 (1998) 13–18.

    Article  Google Scholar 

  32. P. G. Saffman, J. S. Turner, J. Fluid Mech. 1 (1956) 16–30.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-guo Zheng.

Additional information

Foundation Item: Item Sponsored by National Natural Science Foundation of China (51474059, 51204042); Program for Liaoning Excellent Talents in University of China (LJQ2014031); Fundamental Research Funds for the Central Universities of China (N140205003)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Sg., Zhu, My. Modelling Effect of Circulation Flow Rate on Inclusion Removal in RH Degasser. J. Iron Steel Res. Int. 23, 1243–1248 (2016). https://doi.org/10.1016/S1006-706X(16)30183-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1006-706X(16)30183-2

Key words

Navigation