Skip to main content
Log in

Modeling the Effects of Filler Network and Interfacial Shear Strength on the Mechanical Properties of Carbon Nanotube-Reinforced Nanocomposites

  • Advanced Characterization of Interfaces and Thin Films
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This modeling paper describes the roles of filler network and imperfect interfacial adhesion between polymer matrix and nanoparticles in the tensile modulus and yield strength of polymer/carbon nanotube (CNT) nanocomposites (PCNT). The percolation threshold (\( \phi_{\text{p}} \)) is assumed by the aspect ratio of the CNT; also, both the critical length of the nanotubes. Crucial for effective stress transfer from matrix to filler (Lc). and the interfacial shear strength (τ) reflect the incomplete interfacial adhesion. Two known micromechanics models are used to examine the influences of these parameters on the tensile modulus and yield strength of PCNT. The lowest ranges of \( \phi_{\text{p}} \) and Lc produce the highest levels of mechanical properties, while τ cannot affect the mechanical performance. The main reasons for these occurrences are explained in order to clarify the roles of the filler network and interfacial adhesion in the modulus and strength of PCNT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Farahi, G.D. Najafpour, and A. Ghoreyshi, JOM 71, 285 (2019).

    Article  Google Scholar 

  2. Y. Zare and K.Y. Rhee, JOM 71, 3980 (2019).

    Article  Google Scholar 

  3. A. Adegbenjo, P. Olubambi, J. Westraadt, M. Lesufi, and M. Mphahlele, JOM 71, 2262 (2019).

    Article  Google Scholar 

  4. A.M. Okoro, S.S. Lephuthing, S.R. Oke, O.E. Falodun, M.A. Awotunde, and P.A. Olubambi, JOM 71, 567 (2019).

    Article  Google Scholar 

  5. S. Arora, M. Rekha, A. Gupta, and C. Srivastava, JOM 70, 2590 (2018).

    Article  Google Scholar 

  6. S.M. Naghib, M. Rabiee, and E. Omidinia, Int. J. Electrochem. Sci. 9, 2301 (2014).

    Google Scholar 

  7. Y. Zare and K.Y. Rhee, Compos. Part B 156, 100 (2019).

    Article  Google Scholar 

  8. Y. Zare and K.Y. Rhee, Polym. Compos. 40, 4135 (2019).

    Article  Google Scholar 

  9. R. Salahandish, A. Ghaffarinejad, S.M. Naghib, K. Majidzadeh-A, and A. Sanati-Nezhad, IEEE Sens. J. 18, 2513 (2018).

    Article  Google Scholar 

  10. E. Askari and S.M. Naghib, Int. J. Electrochem. Sci. 13, 886 (2018).

    Article  Google Scholar 

  11. A.H.Z. Kalkhoran, O. Vahidi, and S.M. Naghib, Euro. J. Pharm. Sci. 111, 303 (2018).

    Article  Google Scholar 

  12. P.S. Bharadiya, M.K. Singh, and S. Mishra, JOM 71, 838 (2019).

    Article  Google Scholar 

  13. B.G. Compton, N.S. Hmeidat, R.C. Pack, M.F. Heres, and J.R. Sangoro, JOM 70, 292 (2018).

    Article  Google Scholar 

  14. S.M. Naghib, Micro Nano Lett. 14, 462 (2019).

    Article  Google Scholar 

  15. A.K. Kasar, G. Xiong, and P.L. Menezes, JOM 70, 829 (2018).

    Article  Google Scholar 

  16. S.M. Naghib, E. Parnian, H. Keshvari, E. Omidinia, and M. Eshghan-Malek, Int. J. Electrochem. Sci. 13, 1013 (2018).

    Article  Google Scholar 

  17. A.H.Z. Kalkhoran, S.M. Naghib, O. Vahidi, and M. Rahmanian, Biomed. Phys. Eng. Express 4, 055017 (2018).

    Article  Google Scholar 

  18. X. Tian, Y. Hu, J. Zhang, X. Guo, R. Bai, and L. Zhao, J. Mater. Sci. 54, 14975 (2019).

    Article  Google Scholar 

  19. Y. Zare and K.Y. Rhee, Compos. Part B 175, 107132 (2019).

    Article  Google Scholar 

  20. Y. Zare and K.Y. Rhee, Compos. Part B 161, 601 (2019).

    Article  Google Scholar 

  21. Y. Zare, S.P. Park, and K.Y. Rhee, Results Phys. 13, 102245 (2019).

    Article  Google Scholar 

  22. A. Rostami, F. Eskandari, M. Masoomi, and M. Nowrouzi, J. Oil Gas Petrochem. Technol. 6, 28 (2019).

    Google Scholar 

  23. A. Rostami, M. Vahdati, and H. Nazockdast, Polym. Compos. 39, 2356 (2018).

    Article  Google Scholar 

  24. R. Razavi, Y. Zare, and K.Y. Rhee, Polym. Compos. 40, 801 (2019).

    Article  Google Scholar 

  25. M. Jomaa, L. Roiban, D. Dhungana, J. Xiao, J. Cavaillé, L. Seveyrat, L. Lebrun, G. Diguet, and K. Masenelli-Varlot, Compos. Sci. Technol. 171, 103 (2019).

    Article  Google Scholar 

  26. G. Santoro, M.A. Gomez, C. Marco, and G. Ellis, Macromol. Mater. Eng. 295, 652 (2010).

    Article  Google Scholar 

  27. A. Alian, S. El-Borgi, and S. Meguid, Comput. Mater. Sci. 117, 195 (2016).

    Article  Google Scholar 

  28. Y. Zare and K.Y. Rhee, Compos. Part B 158, 162 (2019).

    Article  Google Scholar 

  29. Y. Zare and K. Rhee, Phys. Mesomech. 21, 351 (2018).

    Article  Google Scholar 

  30. S.S.E. Bakhtiari, S. Karbasi, S.A.H. Tabrizi, and R. Ebrahimi-Kahrizsangi, Polym. Compos. 40, E1622 (2019).

    Article  Google Scholar 

  31. S. Kim, Y. Zare, H. Garmabi, and K.Y. Rhee, Sens. Actuators A 274, 28 (2018).

    Article  Google Scholar 

  32. C. Wan and B. Chen, J. Mater. Chem. 22, 3637 (2012).

    Article  Google Scholar 

  33. M.M. Shokrieh and R. Rafiee, Compos. Struct. 92, 647 (2010).

    Article  Google Scholar 

  34. Y. Zare, S. Rhim, H. Garmabi, and K.Y. Rhee, J. Mech. Behav. Biomed. Mater. 80, 164 (2018).

    Article  Google Scholar 

  35. Y. Zare, K.Y. Rhee, and S.-J. Park, J. Ind. Eng. 69, 331 (2019).

    Article  Google Scholar 

  36. R. Shokri-Oojghaz, R. Moradi-Dastjerdi, H. Mohammadi, and K. Behdinan, Polym. Compos. 40, E1918 (2019).

    Article  Google Scholar 

  37. H. Daghigh and V. Daghigh, Polym. Compos. 40, E1479 (2019).

    Article  Google Scholar 

  38. Y. Zare and K.Y. Rhee, JOM 71, 3989 (2019).

    Article  Google Scholar 

  39. X. Ma, Y. Zare, and K.Y. Rhee, Nanoscale Res. Lett. 12, 621 (2017).

    Article  Google Scholar 

  40. S. Gupta, R. Sachan, A. Bhaumik, and J. Narayan, Nanotechnology 29, 45LT02 (2018).

    Article  Google Scholar 

  41. J. Narayan, S. Gupta, A. Bhaumik, R. Sachan, F. Cellini, and E. Riedo, MRS Commun. 8, 428 (2018).

    Article  Google Scholar 

  42. S. Gupta, R. Sachan, A. Bhaumik, P. Pant, and J. Narayan, MRS Commun. 8, 533 (2018).

    Article  Google Scholar 

  43. Y. Zare, K.Y. Rhee, and S.-J. Park, Results Phys. 14, 1 (2019).

    Google Scholar 

  44. Y. Zare and K.Y. Rhee, J. Alloys Compd. 793, 1 (2019).

    Article  Google Scholar 

  45. J. Sandler, J. Kirk, I. Kinloch, M. Shaffer, and A. Windle, Polymer 44, 5893 (2003).

    Article  Google Scholar 

  46. E. Garboczi, K. Snyder, J. Douglas, and M. Thorpe, Phys. Rev. E 52, 819 (1995).

    Article  Google Scholar 

  47. V. Favier, H. Chanzy, and J. Cavaille, Macromolecules 28, 6365 (1995).

    Article  Google Scholar 

  48. C.J. Plummer, M. Rodlert, J.-L. Bucaille, H.J. Grünbauer, and J.-A.E. Månson, Polymer 46, 6543 (2005).

    Article  Google Scholar 

  49. X.-F. Wu and Y.A. Dzenis, J. Appl. Phys. 98, 093501 (2005).

    Article  Google Scholar 

  50. J. Åström, J. Mäkinen, M.J. Alava, and J. Timonen, Phys. Rev. E 61, 5550 (2000).

    Article  Google Scholar 

  51. A.P. Chatterjee, J. Appl. Phys. 100, 054302 (2006).

    Article  Google Scholar 

  52. D. Shia, C. Hui, S. Burnside, and E. Giannelis, Polym. Compos. 19, 608 (1998).

    Article  Google Scholar 

  53. J. Halpin and J. Kardos, J. Appl. Phys. 43, 2235 (1972).

    Article  Google Scholar 

  54. W.D. Callister and D.G. Rethwisch, Materials Science and Engineering: An Introduction (New York: Wiley, 2007).

    Google Scholar 

  55. Y. Zare, RSC Adv. 6, 57969 (2016).

    Article  Google Scholar 

  56. Y. Zare, Mech. Mater. 85, 1 (2015).

    Article  Google Scholar 

  57. Y. Zhong, J. Wang, Y.M. Wu, and Z. Huang, Compos. Sci. Technol. 64, 1353 (2004).

    Article  Google Scholar 

  58. P. Joshi and S. Upadhyay, Comput. Mater. Sci. 87, 267 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyong Yop Rhee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zare, Y., Rhee, K.Y. Modeling the Effects of Filler Network and Interfacial Shear Strength on the Mechanical Properties of Carbon Nanotube-Reinforced Nanocomposites. JOM 72, 2184–2190 (2020). https://doi.org/10.1007/s11837-020-04083-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04083-x

Navigation