Skip to main content
Log in

A Simulation Work for the Influences of Aggregation/Agglomeration of Clay Layers on the Tensile Properties of Nanocomposites

  • Modeling and Simulation of Composite Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This study examines the aggregation/agglomeration of layered clay in polymer nanocomposites and discusses their influences on nanoparticle characteristics and mechanical properties using appropriate equations. The effective volume fraction, specific surface area, and aspect ratio of layers are calculated in samples containing both single and aggregated/agglomerated nanoparticles. The Young’s modulus and yield strength of nanocomposites are predicted based on the effective characteristics of layers. The aggregation/agglomeration decreases the effective levels of volume fraction, aspect ratio, and specific surface area of nanoparticles. As a result, researchers should prevent the accumulation of clay layers in nanocomposites and encourage the exfoliation of single layers causing optimal properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

q :

Fraction of layers in the accumulated phase

\( \phi_{f} \) :

Volume fraction of layers

A :

Surface area of layers

N :

Number of accumulated layers

t :

Thickness of each layer

p :

Distance between layers

l :

Diameter/length of layers

α :

Aspect ratio of exfoliated layers without accumulation

E m :

Young’s modulus of matrix

E f :

Young’s modulus of nanofiller

E R :

Relative modulus

σ R :

Relative yield strength

σ c :

Yield strength of nanocomposite

σ m :

Yield strength of polymer matrix

s :

Interfacial stress transfer parameter

References

  1. S. Arora, M. Rekha, A. Gupta and C. Srivastava, JOM 70, 2590 (2018).

    Article  Google Scholar 

  2. A. Farahi, G.D. Najafpour, and A. Ghoreyshi, JOM 71, 285 (2019).

    Article  Google Scholar 

  3. A.M. Okoro, S.S. Lephuthing, S.R. Oke, O.E. Falodun, M.A. Awotunde, and P.A. Olubambi, JOM 71, 567 (2019).

    Article  Google Scholar 

  4. K. Buruga and J.T. Kalathi, JOM 70, 1307 (2018).

    Article  Google Scholar 

  5. P. Mishra, B.R. Bhat, B. Bhattacharya, and R. Mehra, JOM 70, 1302 (2018).

    Article  Google Scholar 

  6. M. Khalifa, B. Deeksha, A. Mahendran, and S. Anandhan, JOM 70, 1313 (2018).

    Article  Google Scholar 

  7. B.G. Compton, N.S. Hmeidat, R.C. Pack, M.F. Heres, and J.R. Sangoro, JOM 70, 292 (2018).

    Article  Google Scholar 

  8. Y. Zare and K.Y. Rhee, Compos. Part B 144, 1 (2018).

    Article  Google Scholar 

  9. Z. Javidi, Z. Tarashi, A. Rostami and H. Nazockdast, Express Polym. Lett. 11, 362 (2017).

    Article  Google Scholar 

  10. A. Rostami, M. Vahdati, and H. Nazockdast, Polym. Compos. 39, 2356 (2018).

    Article  Google Scholar 

  11. M.R. Aghjeh, Y. Kazerouni, M. Otadi, H.A. Khonakdar, S.H. Jafari, H. Ebadi-Dehaghani, and S.H. Mousavi, Compos. B 137, 235 (2018).

    Article  Google Scholar 

  12. M. Tayefi, M. Razavi-Nouri, and A. Sabet, Appl. Clay Sci. 135, 206 (2017).

    Article  Google Scholar 

  13. J. Jeddi, O. Yousefzade, A. Babaei, S. Ghanbar, and A. Rostami, Mater. Chem. Phys. 187, 191 (2017).

    Article  Google Scholar 

  14. M. Shabanian, M. Varvanifarahani, M. Hajibeygi, H.A. Khonakdar, S. Ebrahimi, and S.H. Jafari, Appl. Clay Sci. 108, 70 (2015).

    Article  Google Scholar 

  15. S. Rahimi-Razin, M. Salami-Kalajahi, V. Haddadi-Asl, and H. Roghani-Mamaqani, J. Polym. Res. 19, 1 (2012).

    Article  Google Scholar 

  16. F.S. Dehkordi, M. Pakizeh, and M. Namvar-Mahboub, Appl. Clay Sci. 105, 178 (2015).

    Article  Google Scholar 

  17. S.S.E. Bakhtiari, S. Karbasi, S.A.H. Tabrizi and R. Ebrahimi‐Kahrizsangi, Polym. Compos. 40, E1622 (2019).

    Article  Google Scholar 

  18. H. Yazdani, H. Ghasemi, C. Wallace, and K. Hatami, Polym. Compos. 40, E1850 (2018).

    Article  Google Scholar 

  19. M. Karimi, R. Ghajar, and A. Montazeri, Compos. Struct. 201, 528 (2018).

    Article  Google Scholar 

  20. M. Rajaei, N. Kim, S. Bickerton, and D. Bhattacharyya, Compos. B 165, 65 (2019).

    Article  Google Scholar 

  21. P. Rajaee, F.A. Ghasemi, M. Fasihi, and M. Saberian, Compos. B 173, 106803 (2019).

    Article  Google Scholar 

  22. Y. Zare and K.Y. Rhee, JOM 1 (2019) (in press).

  23. Y. Zare and K.Y. Rhee, Compos. A 102, 137 (2017).

    Article  Google Scholar 

  24. Y. Zare and K.Y. Rhee, Compos. B 156, 64 (2019).

    Article  Google Scholar 

  25. L. Gendre, J. Njuguna, H. Abhyankar, and V. Ermini, Mater. Des. 66, 486 (2015).

    Article  Google Scholar 

  26. J. Kredatusová and J. Brožek, Appl. Clay Sci. 62, 94 (2012).

    Article  Google Scholar 

  27. D.N. Bikiaris, G.Z. Papageorgiou, E. Pavlidou, N. Vouroutzis, P. Palatzoglou, and G.P. Karayannidis, J. Appl. Polym. Sci. 100, 2684 (2006).

    Article  Google Scholar 

  28. S.R. Bakshi, R.G. Batista, and A. Agarwal, Compos. A 40, 1311 (2009).

    Article  Google Scholar 

  29. X. Ma, Y. Zare, and K.Y. Rhee, Nanoscale Res. Lett. 12, 621 (2017).

    Article  Google Scholar 

  30. A. Chatterjee and B. Deopura, Compos. A 37, 813 (2006).

    Article  Google Scholar 

  31. A. Esbati and S. Irani, Mech. Mater. 118, 106 (2018).

    Article  Google Scholar 

  32. M. Hassanzadeh-Aghdam, R. Ansari, M. Mahmoodi, and A. Darvizeh, Compos. Sci. Technol. 162, 93 (2018).

    Article  Google Scholar 

  33. R. Shokri‐Oojghaz, R. Moradi‐Dastjerdi, H. Mohammadi and K. Behdinan, Polym. Compos. 40, E1918 (2019).

    Article  Google Scholar 

  34. T. Fornes, D. Hunter, and D. Paul, Polymer 45, 2321 (2004).

    Article  Google Scholar 

  35. Y.W. Chang, S. Kim, and Y. Kyung, Polym. Int. 54, 348 (2005).

    Article  Google Scholar 

  36. J.C. Halpin and J. Kardos, Polym. Eng. Sci. 16, 344 (1976).

    Article  Google Scholar 

  37. W.D. Callister and D.G. Rethwisch, Materials science and engineering: an introduction (New York: Wiley, 2007).

    Google Scholar 

  38. A. Durmus, A. Kasgoz, and C.W. Macosko, Polymer 48, 4492 (2007).

    Article  Google Scholar 

  39. B. Yalcin and M. Cakmak, Polymer 45, 6623 (2004).

    Article  Google Scholar 

  40. Y. Zare, Nanoscale Res. Lett. 11, 479 (2016).

    Article  Google Scholar 

  41. Y. Zare, S. Rhim, H. Garmabi and K.Y. Rhee, J. Mech. Behav. Biomed. Mater. 80, 164 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyong Yop Rhee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zare, Y., Rhee, K.Y. A Simulation Work for the Influences of Aggregation/Agglomeration of Clay Layers on the Tensile Properties of Nanocomposites. JOM 71, 3989–3995 (2019). https://doi.org/10.1007/s11837-019-03768-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03768-2

Navigation