Skip to main content
Log in

Electrical and Mechanical Properties of 3D-Printed Graphene-Reinforced Epoxy

  • Additive Manufacturing of Composites and Complex Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Recent developments in additive manufacturing have demonstrated the potential for thermoset polymer feedstock materials to achieve high strength, stiffness, and functionality through incorporation of structural and functional filler materials. In this work, graphene was investigated as a potential filler material to provide rheological properties necessary for direct-write three-dimensional (3D) printing and electrostatic discharge properties to the printed component. The rheological properties of epoxy/graphene mixtures were characterized, and printable epoxy/graphene inks formulated. Sheet resistance values for printed epoxy/graphene composites ranged from 0.67 × 102 Ω/sq to 8.2 × 103 Ω/sq. The flexural strength of printed epoxy/graphene composites was comparable to that of cast neat epoxy (~ 80 MPa), suggesting great potential for these new materials in multifunctional 3D-printed devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. R.D. Farahani, M. Dubé, and D. Therriault, Adv. Mater. 28, 28 (2016).

    Article  Google Scholar 

  2. T. Hofstätter, D.B. Pedersen, G. Tosello, and H.N. Hansen, J. Reinf. Plast. Compos. 36, 15 (2017).

    Article  Google Scholar 

  3. P. Parandoush and D. Lin, Compos. Struct. 182, 36 (2017).

    Article  Google Scholar 

  4. X. Wang, M. Jiang, Z. Zhou, J. Gou, and D. Hui, Compos. Part B Eng. 110, 442 (2017).

    Article  Google Scholar 

  5. S.H. Ahn, M. Montero, D. Odell, S. Roundy, and P.K. Wright, Rapid Prototyp. J. 8, 4 (2002).

    Article  Google Scholar 

  6. C.E. Duty, V. Kunc, B. Compton, B. Post, D. Erdman, R. Smith, R. Lind, P. Lloyd, and L. Love, Rapid Prototyp. J. 23, 1 (2017).

    Article  Google Scholar 

  7. O. Es-Said, J. Foyos, R. Noorani, M. Mendelson, R. Marloth, and B. Pregger, Mater. Manuf. Process. 15, 1 (2000).

    Article  Google Scholar 

  8. V. Kishore, C. Ajinjeru, A. Nycz, B. Post, J. Lindahl, V. Kunc, and C. Duty, Addit. Manuf. 14, 7 (2017).

    Article  Google Scholar 

  9. Q. Sun, G. Rizvi, C. Bellehumeur, and P. Gu, Rapid Prototyp. J. 14, 2 (2008).

    Article  Google Scholar 

  10. M. Shofner, K. Lozano, F. Rodríguez-Macías, and E. Barrera, J. Appl. Polym. Sci. 89, 11 (2003).

    Article  Google Scholar 

  11. B.G. Compton, B.K. Post, C.E. Duty, L. Love, and V. Kunc, Addit. Manuf. 17, 77 (2017).

    Article  Google Scholar 

  12. L.J. Love, V. Kunc, O. Rios, C.E. Duty, A.M. Elliott, B.K. Post, R.J. Smith, and C.A. Blue, J. Mater. Res. 29, 17 (2014).

    Article  Google Scholar 

  13. M. Talagani, S. DorMohammadi, R. Dutton, C. Godines, H. Baid, F. Abdi, V. Kunc, B. Compton, S. Simunovic, and C. Duty, SAMPE J. 51, 4 (2015).

    Google Scholar 

  14. T.-M. Wang, J.-T. Xi, and Y. Jin, Int. J. Adv. Manuf. Technol. 33, 11 (2007).

    Google Scholar 

  15. P. Calvert, T.L. Lin, and H. Martin, High Perform. Polym. 9, 4 (1997).

    Article  Google Scholar 

  16. B.G. Compton, J.W. Kemp, T.V. Novikov, R.C. Pack, C.I. Nlebedim, C.E. Duty, O. Rios, and M.P. Paranthaman, Mater. Manuf. Process. (2016). https://doi.org/10.1080/10426914.2016.1221097.

    Google Scholar 

  17. B.G. Compton and J.A. Lewis, Adv. Mater. 26, 34 (2014).

    Google Scholar 

  18. R.D. Farahani, H. Dalir, V. Le Borgne, L.A. Gautier, M.A. El Khakani, M. Levesque, and D. Therriault, Nanotechnology 23, 8 (2012).

    Article  Google Scholar 

  19. N.S. Hmeidat, J.W. Kemp, and B.G. Compton, Compos. Sci. Technol. (2017, in Review).

  20. M. Invernizzi, G. Natale, M. Levi, S. Turri, and G. Griffini, Materials 9, 7 (2016).

    Article  Google Scholar 

  21. J.P. Lewicki, J.N. Rodriguez, C. Zhu, M.A. Worsley, A.S. Wu, Y. Kanarska, J.D. Horn, E.B. Duoss, J.M. Ortega, and W. Elmer, Sci. Rep. 7, 43401 (2017).

    Article  Google Scholar 

  22. S. Malek, J.R. Raney, J.A. Lewis, and L.J. Gibson, Bioinspir. Biomim. 12, 2 (2017).

    Article  Google Scholar 

  23. J. Peng, T.L. Lin, and P. Calvert, Compos. Part A Appl. Sci. Manuf. 30, 2 (1999).

    Article  Google Scholar 

  24. M. Dinkgreve, J. Paredes, M.M. Denn, and D. Bonn, J. Non-Newton. Fluid Mech. 238, 33 (2016).

    MathSciNet  Google Scholar 

  25. S.G. Miller, J.L. Bauer, M.J. Maryanski, P.J. Heimann, J.P. Barlow, J.-M. Gosau, and R.E. Allred, Compos. Sci. Technol. 70, 7 (2010).

    Google Scholar 

Download references

Acknowledgements

This work was generously supported by the University of Tennessee and by Honeywell Federal Manufacturing and Technologies through Contract N000230945, administered by Dr. Jamie Messman. B. G. C. and R. C. P. would also like to acknowledge support from the Center for Materials Processing at the University of Tennessee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brett G. Compton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Compton, B.G., Hmeidat, N.S., Pack, R.C. et al. Electrical and Mechanical Properties of 3D-Printed Graphene-Reinforced Epoxy. JOM 70, 292–297 (2018). https://doi.org/10.1007/s11837-017-2707-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2707-x

Navigation