Skip to main content
Log in

Evaluation of the Tensile Strength in Carbon Nanotube-Reinforced Nanocomposites Using the Expanded Takayanagi Model

  • Modeling and Simulation of Composite Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this study, we used the Takayanagi model expanded by Loos and Manas-Zloczower for the tensile modulus to assess the tensile strength of polymer/carbon nanotube nanocomposites (PCNTs). The new model assumes the strengthening and percolating efficiencies of the interphase between the polymer matrix and the nanoparticles. We evaluated the suggested model with the experimental data of two PCNTs and found that this model successfully calculated the average levels of the percolation threshold, interphase thickness (t), and interphase strength (σiN). The percolation threshold > 0.004, interphase volume fraction < 0.06, percentage of nanoparticles in the network < 0.015, and CNTs radius > 30 nm caused the lowest relative tensile strength, less than the strength of the polymer matrix. Among the studied variables, the t and σiN parameters most significantly affected the tensile strength of PCNTs; when t = 25 nm and σiN = 17 GPa, there was 1300% improvement in the strength of the PCNT. This model can be applied in future studies to accelerate the material design process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Asyraf, M. Anwar, L.M. Sheng, and M.K. Danquah, JOM 69, 2515 (2017).

    Article  Google Scholar 

  2. S. Arora, M. Rekha, A. Gupta, and C. Srivastava, JOM 70, 2590 (2018).

    Article  Google Scholar 

  3. H. Palza, N. Saldias, P. Arriagada, P. Palma, and J. Sanchez, JOM 69, 1319 (2017).

    Article  Google Scholar 

  4. A.M. Okoro, S.S. Lephuthing, S.R. Oke, O.E. Falodun, M.A. Awotunde, and P.A. Olubambi, JOM 71, 567 (2019).

    Article  Google Scholar 

  5. A. Farahi, G.D. Najafpour, and A. Ghoreyshi, JOM 71, 285 (2019).

    Article  Google Scholar 

  6. B. Chen, H. Imai, J. Umeda, M. Takahashi, and K. Kondoh, JOM 69, 669 (2017).

    Article  Google Scholar 

  7. A.C. Power, B. Gorey, S. Chandra, and J. Chapman, Nanotechnol. Rev. 7, 19 (2018).

    Article  Google Scholar 

  8. B. Naseer, G. Srivastava, O.S. Qadri, S.A. Faridi, R. Islam, and K. Younis, Nanotechnol. Rev. 7, 623 (2018).

    Article  Google Scholar 

  9. A. Rostami, M. Vahdati, and H. Nazockdast, Polym. Compos. 39, 2356 (2018).

    Article  Google Scholar 

  10. S.S.E. Bakhtiari, S. Karbasi, S.A.H. Tabrizi, and R. Ebrahimi-Kahrizsangi, Polym. Compos. 40, E1622 (2019).

    Article  Google Scholar 

  11. Y. Zare and K.Y. Rhee, JOM 69, 2762 (2017).

    Article  Google Scholar 

  12. Y. Zare, H. Garmabi, and K.Y. Rhee, Compos. B 144, 1 (2018).

    Article  Google Scholar 

  13. H. Daghigh and V. Daghigh, Polym. Compos. 40, E1479 (2019).

    Article  Google Scholar 

  14. S. Roy, R.S. Petrova, and S. Mitra, Nanotechnol. Rev. 7, 475 (2018).

    Article  Google Scholar 

  15. P. Zhang, W. Yi, H. Xu, C. Gao, J. Hou, W. Jin, Y. Lei, and X. Hou, Nanotechnol. Rev. 7, 487 (2018).

    Article  Google Scholar 

  16. A. Ameli, Y. Kazemi, S. Wang, C. Park, and P. Pötschke, Compos. A 96, 28 (2017).

    Article  Google Scholar 

  17. R. Razavi, Y. Zare, and K.Y. Rhee, RSC Adv. 7, 50225 (2017).

    Article  Google Scholar 

  18. S.C. Baxter and C.T. Robinson, Compos. Sci. Technol. 71, 1273 (2011).

    Article  Google Scholar 

  19. H.-X. Li, Y. Zare, and K.Y. Rhee, Mater. Chem. Phys. 207, 76 (2018).

    Article  Google Scholar 

  20. J.-M. Zhu, Y. Zare, and K.Y. Rhee, Colloid. Surf. A 539, 29 (2018).

    Article  Google Scholar 

  21. B.S. Fralick, E.P. Gatzke, and S.C. Baxter, Probabil. Eng. Mech. 30, 1 (2012).

    Article  Google Scholar 

  22. J. Amraei, J.E. Jam, B. Arab, and R.D. Firouz-Abadi, Polym. Compos. 40, E1219 (2019).

    Article  Google Scholar 

  23. Y. Zare, M. Fasihi, and K.Y. Rhee, Appl. Clay Sci. 143, 265 (2017).

    Article  Google Scholar 

  24. H. Shin, S. Yang, J. Choi, S. Chang, and M. Cho, Chem. Phys. Lett. 635, 80 (2015).

    Article  Google Scholar 

  25. R. Qiao and L.C. Brinson, Compos. Sci. Technol. 69, 491 (2009).

    Article  Google Scholar 

  26. Y. Zare, K.Y. Rhee, and S.-J. Park, Int. J. Adhes. Adhes. 79, 111 (2017).

    Article  Google Scholar 

  27. Y. Zare and K.Y. Rhee, Curr. Appl. Phys. 17, 873 (2017).

    Article  Google Scholar 

  28. Z. Liu, W. Peng, Y. Zare, D. Hui, and K.Y. Rhee, RSC Adv. 8, 19001 (2018).

    Article  Google Scholar 

  29. R. Razavi, Y. Zare, and K.Y. Rhee, Colloid. Surf. A 538, 148 (2018).

    Article  Google Scholar 

  30. M. Loos and I. Manas-Zloczower, Polym. Eng. Sci. 53, 882 (2013).

    Article  Google Scholar 

  31. Y. Zare and K.Y. Rhee, Eur. Polym. J. 87, 389 (2017).

    Article  Google Scholar 

  32. Y. Zare and K.Y. Rhee, Nanosc. Res. Lett. 12, 42 (2017).

    Article  Google Scholar 

  33. N. Nikfar, Y. Zare, and K.Y. Rhee, Phys. B 533, 69 (2018).

    Article  Google Scholar 

  34. A.P. Chatterjee, J. Appl. Phys. 100, 054302 (2006).

    Article  Google Scholar 

  35. Y. Zare and K.Y. Rhee, J. Colloid Interface Sci. 506, 283 (2017).

    Article  Google Scholar 

  36. G. Seidel and A.-S. Puydupin-Jamin, Mech. Mater. 43, 755 (2011).

    Article  Google Scholar 

  37. Z. Dominkovics, J. Hári, J. Kovács, E. Fekete, and B. Pukánszky, Eur. Polym. J. 47, 1765 (2011).

    Article  Google Scholar 

  38. X. Xu and N. Gupta, Adv. Theory Simul. 2, 1800131 (2019).

    Article  Google Scholar 

  39. X. Xu, C. Koomson, M. Doddamani, R.K. Behera, and N. Gupta, Compos. Part B 159, 346 (2019).

    Article  Google Scholar 

  40. S.M. Yuen and C.C.M. Ma, J. Appl. Polym. Sci. 109, 2000 (2008).

    Article  Google Scholar 

  41. Y.-L. Liu, W.-H. Chen, and Y.-H. Chang, Carbohydr. Polym. 76, 232 (2009).

    Article  Google Scholar 

  42. M. Ayatollahi, S. Shadlou, M. Shokrieh, and M. Chitsazzadeh, Polym. Test. 30, 548 (2011).

    Article  Google Scholar 

  43. J. Yang, Y. Zhang, Z. Wang, and P. Chen, RSC Adv. 4, 1246 (2014).

    Article  Google Scholar 

  44. D. Li, Q. Liu, L. Yu, X. Li, and Z. Zhang, Appl. Surf. Sci. 255, 7871 (2009).

    Article  Google Scholar 

  45. J. Wernik, B. Cornwell-Mott, and S. Meguid, Int. J. Solid. Struct. 49, 1852 (2012).

    Article  Google Scholar 

  46. M. Zappalorto, M. Salviato, and M. Quaresimin, Compos. Sci. Technol. 72, 49 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyong Yop Rhee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zare, Y., Rhee, K.Y. Evaluation of the Tensile Strength in Carbon Nanotube-Reinforced Nanocomposites Using the Expanded Takayanagi Model. JOM 71, 3980–3988 (2019). https://doi.org/10.1007/s11837-019-03536-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03536-2

Navigation