Skip to main content
Log in

Isothermal Reduction Kinetics of Chromium-Bearing Vanadium–Titanium Sinter Reduced with CO Gas at 1173 K

  • Metallurgical Kinetics
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The reduction process of chromium-bearing vanadium–titanium sinter (CVTS) was studied under the simulated conditions of a blast furnace at 1173 K, and the kinetics and mineral phases were analyzed. The reduction kinetics of CVTS at different reduction times was studied using a shrinking unreacted core model. The microstructure, mineral phase and variations of the sinter during reduction were observed by x-ray diffraction, scanning electron microscopy and metallographic microscope. Results indicate that the porosity of the CVTS increased with the reduction time and that the reduction rate and degree of the CVTS both improved. Although internal diffusion resistance emerged during the reduction process and gradually increased, the interfacial reduction reaction controlled the entire process and was the rate-limiting factor. Increasing the ratio of microporosity in CVTS is found to be an effective way to improve both the reduction ability and the strength of the CVTS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H.G. Du, Principle of Smelting Vanadium–Titanium Magnetite in the Blast Furnace (Beijing: Science, 1996), p. 1.

    Google Scholar 

  2. J.X. Liu, G.J. Cheng, Z.G. Liu, and X.X. Xue, Steel Res. Int. 86, 808 (2015).

    Article  Google Scholar 

  3. S.T. Yang, Y.L. Gan, X.X. Xue, and B. Li, Ironmak. Steelmak. 45, 959 (2018).

    Article  Google Scholar 

  4. S.T. Yang, M. Zhou, T. Jiang, and X.X. Xue, Int. J. Miner. Met. Mater. 23, 1353 (2016).

    Article  Google Scholar 

  5. M. Gan, Z.Y. Ji, X.H. Fan, W. Lv, R.Y. Zheng, X.L. Chen, S. Liu, and T. Jiang, Powder Technol. 333, 385 (2018).

    Article  Google Scholar 

  6. G.J. Wong, X.H. Fan, M. Gan, Z.Y. Ji, X.L. Chen, Z.Y. Tian, and Z.Z. Wang, Powder Technol. 342, 873 (2019).

    Article  Google Scholar 

  7. M. Gan, Z.Y. Ji, X.H. Fan, X.L. Chen, R.Y. Zheng, L. Gao, G.J. Wang, and T. Jiang, Powder Technol. 328, 122 (2018).

    Article  Google Scholar 

  8. D.G. Qi, Chin. J. Process Eng. S1, 27 (1979).

    Google Scholar 

  9. S.B. Chu and S.T. Shi, Iron Steel 16, 13 (1981).

    Google Scholar 

  10. K. Sun, Y.Y. Ma, G.C. Bai, and F.J. Liu, Chin. J. Nonferrous Met. 8, 390 (1998).

    Google Scholar 

  11. E. Park and O. Ostrovski, ISIJ Int. 44, 74 (2004).

    Article  Google Scholar 

  12. E. Park and O. Ostrovski, ISIJ Int. 44, 999 (2004).

    Article  Google Scholar 

  13. E. Park and O. Ostrovski, ISIJ Int. 43, 1316 (2003).

    Article  Google Scholar 

  14. M. Zhou, S.T. Yang, T. Jiang, and X.X. Xue, Ironmak. Steelmak. 42, 217 (2015).

    Article  Google Scholar 

  15. M. Zhou, S.T. Yang, T. Jiang, and X.X. Xue, JOM 67, 1203 (2015).

    Article  Google Scholar 

  16. S.T. Yang, M. Zhou, T. Jiang, and X.X. Xue, Miner. Basel 7, 210 (2017).

    Google Scholar 

  17. S.T. Yang, M. Zhou, T. Jiang, and X.X. Xue, Trans. Nonferrous Met. Soc. 25, 2087 (2015).

    Article  Google Scholar 

  18. M. Zhou, S.T. Yang, T. Jiang, X.X. Xue, and W.J. Zhang, Metall. Res. Technol. 113, 612 (2016).

    Article  Google Scholar 

  19. X.L. Wang, Iron and Steel Metallurgy (Ironmaking) (Beijing: Metallurgical Industry Press, 2000), p. 77.

    Google Scholar 

  20. A.A. El-Geassy, Ironmak. Steelmak. 26, 41 (1999).

    Google Scholar 

  21. A.A. El-Geassy, ISIJ Int. 36, 1344 (1996).

    Article  Google Scholar 

  22. Y. Zhao, K. Wu, W. Pan, and Q.H. Liu, J. Northeast. Univ. Nat. Sci. 34, 1282 (2013).

    Google Scholar 

  23. M.I. Nasr, A.A. Omar, M.H. Khedr, and A.A. El-Gesaay, ISIJ Int. 35, 1043 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Programs of the National Natural Science Foundation of China (Nos. 51604065, 51674084, 51174051 and 51574082), the National Basic Research Program of China (973 Program) (No. 2013CB632603), the Fundamental Funds for the Central Universities (Nos. N172507012 and 150202001), the Program of the National Natural Science Foundation of Liaoning Province (20170540316) and the National Key Technology Research and Development Program (No. 2015BAB19B02), the Youth Fund of University of Science and Technology Liaoning (No. 2018QN05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songtao Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Zhou, M., Xue, X. et al. Isothermal Reduction Kinetics of Chromium-Bearing Vanadium–Titanium Sinter Reduced with CO Gas at 1173 K. JOM 71, 2812–2820 (2019). https://doi.org/10.1007/s11837-019-03533-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03533-5

Navigation