Skip to main content

Advertisement

Log in

Aluminium production process: from Hall–Héroult to modern smelters

  • Lecture Text
  • Published:
ChemTexts Aims and scope Submit manuscript

Abstract

This article gives a brief overview of the history of modern aluminium production, which started with the invention of electrowinning of dissolved aluminium oxide in molten cryolite (Na3AlF6)-based electrolytes in 1886. All primary aluminium production is still based on the same principles, although numerous improvements and adoptions have been developed over the years. A historical development of the process is followed by brief fundamental and thermodynamic aspects of the reactions. Some of the most important developments are described, with a focus on the carbon anode production process. Carbon anodes, which are responsible for the majority of direct greenhouse gas (GHG) emissions by the industry, are discussed thoroughly, and recent developments in inert anodes and utilization of biomass in anode formulation are presented. Finally, the environmental footprint of the process and the trends and objectives of the industry towards improving energy efficiency and mitigating environmental emissions are elaborated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Adopted from: Energy Efficiency and Renewable, 2007)

Fig. 14

Adopted from World Aluminium report on Aluminium Sector Greenhouse Gas Pathway to 2050, March 2021)

Fig. 15
Fig. 16

Adopted from World Aluminium report on Aluminium Sector Greenhouse Gas Pathway to 2050, March 2021)

Similar content being viewed by others

References

  1. Kozlowski R, Wladyka-Przybylak MAR (2001) Natural polymers, wood and lignocellulosic materials. In: Horrocks AR, Price D (eds) Fire retardant materials. Woodhead Publishing Limited, Cambridge

    Google Scholar 

  2. Osborn EL (2016) From bauxite to cooking pots: aluminum, chemistry, and West African artisanal production. Hist Sci 54(4):425–442. https://doi.org/10.1177/0073275316681806

    Article  PubMed  Google Scholar 

  3. Pearse MJ (2003) Historical use and future development of chemicals for solid–liquid separation in the mineral processing industry. Miner Eng 16(2):103–108. https://doi.org/10.1016/S0892-6875(02)00288-1

    Article  CAS  Google Scholar 

  4. Ashkenazi D (2019) How aluminum changed the world: a metallurgical revolution through technological and cultural perspectives. Technol Forecast Soc Chang 143:101–113. https://doi.org/10.1016/j.techfore.2019.03.011

    Article  Google Scholar 

  5. Baker I (2018) Aluminium/aluminum. Fifty materials that make the world. Springer, Cham. https://doi.org/10.1007/978-3-319-78766-4_2

    Book  Google Scholar 

  6. Habashi F (2013) The beginnings of the aluminum industry. Nano studies 8:333–344

    Google Scholar 

  7. Le Roux M (2015) From science to industry: the sites of aluminium in France from the nineteenth to the twentieth century. Ambix 62(2):114–137. https://doi.org/10.1179/1745823415Y.0000000001

    Article  CAS  PubMed  Google Scholar 

  8. Eskin DG (2008) Physical metallurgy of direct chill casting of aluminum alloys. CRC Press, Taylor and Francis Group, New York

    Book  Google Scholar 

  9. Buffington J (2012) The beverage can in the United States: achieving a 100% recycled aluminum can through supply chain innovation. JOM 64(8):923–932. https://doi.org/10.1007/s11837-012-0381-6

    Article  Google Scholar 

  10. Anderson W (1888) Aluminium and its manufacture by the DEVILLE-CASTNER process. J Soc Arts 37:378

    Google Scholar 

  11. Hall C.M (1889) US Patent No. 400,664

  12. Héroult P (1886) French Patent No. 175,711

  13. McClung M, Ross JA (2000) A method to correlate raw material properties to baked anode core performance. Light Metals 2000:481–486

    Google Scholar 

  14. Kátai-Urbán L, Cséplı Z (2010) Disaster in the Ajak Red Mud sludge reservoir; Sixth Meeting of the Conference of the Parties to the Convention on the Transboundary Effects of Industrial Accidents. The Hague, 8–10 November 2010

  15. Tsakiridis PE, Agatzini-Leonardou S, Oustadakis P (2004) Red mud addition in the raw meal for the production of Portland cement clinker. J Haz Mater 116(1–2):103–110

    Article  CAS  Google Scholar 

  16. Erςagğ E, Apak R (1997) Furnace smelting and extractive metallurgy of red mud: recovery of TiO2, Al2O3 and pig-iron. J Chem Tech Biotech 70(3):241–246

    Article  Google Scholar 

  17. Altundogan HS, Altundogan S, Tumen F, Bildik M (2002) Arsenic adsorption from aqueous solutions by activated red mud. Waste Manage 22:357–363

    Article  CAS  Google Scholar 

  18. Anawati J, Reid S, Azimi G (2018) Innovative and sustainable valorization process to recover scandium and rare earth elements from Canadian BR. Extraction 2018:2715–2722

    Google Scholar 

  19. Urato N (2005) Wave mode coupling and instability in the internal wave in aluminum reduction cells. Light Metals 2016:455–460. https://doi.org/10.1007/978-3-319-48156-2_53

    Article  Google Scholar 

  20. Kvande H, Haupin W (2001) Inert anodes for Al smelters: energy balances and environmental impact. JOM 53:29–33. https://doi.org/10.1007/s11837-001-0205-6

    Article  CAS  Google Scholar 

  21. Thorne RJ, Sommerseth C, Ratvik AP, Rørvik S, Sandnes E, Lossius LP, Linga H, Svensson AM (2015) Correlation between coke type, microstructure and anodic reaction overpotential in aluminium electrolysis. J Electrochem Soc 162:E296. https://doi.org/10.1149/2.0461512jes

    Article  CAS  Google Scholar 

  22. Thorne R, Sommerseth C, Ratvik AP, Rørvik S, Sandnes E, Lossius EP, Linga H, Svensson AM (2015) Bubble evolution and anode surface properties in aluminium electrolysis. J Electrochem Soc 162:E104. https://doi.org/10.1149/2.0321508jes

    Article  CAS  Google Scholar 

  23. Sørlie M, Øye H (2010) Cathodes in aluminium electrolysis. Aluminium GmbH, Düsseldorf

    Google Scholar 

  24. Østrem Ø (2013) Cathode wear in Hall-Héroult cells. Ph.D. Thesis, NTNU (Norway)

  25. Picard D, Bouzemmi W, Allard B, Alamdari H, Fafard M (2010) Thermo-Mechanical characterisation of graphitic and graphitized carbon cathode materials used in aluminium electrolysis cells. Light Metals 2010:823–828

    Google Scholar 

  26. Picard D, Sorelli L, Réthoré J, Alamdari H, Baril MA, Fafard M (2017) Identification of the stress intensity factor of carbon cathode by digital image correlation. Light Metals 2017:1275–1280. https://doi.org/10.1007/978-3-319-51541-0_152

    Article  Google Scholar 

  27. Sørlie M, Øye H (1994) Cathodes in aluminium electrolysis. Aluminium, Düsseldorf

    Google Scholar 

  28. Grjotheim K, Næumann R, Oye H (1977) Formation of aluminum carbide in the presence of cryolite melts. Light Metals 1977:1

    Google Scholar 

  29. Keller F, Fischer WK (1992) Anode manufacturing in a changing environment: an overview. Light Metals 1992:673–686

    Google Scholar 

  30. Meier MW (1996) Cracking behaviour of anodes, PhD Thesis. Zurich: Federal Institute of Technology

  31. Hulse KL (2000) Anode Manufacture Raw Materials Formulation and Processing Parameters (1st edn). R&D Carbon Ltd.

  32. Belitskus DL, Danka DJ (2016) A comprehensive determination of effects of calcined petroleum coke properties on aluminum reduction cell anode properties. Light Metals 2016:59–72

    Google Scholar 

  33. Fischer WK, Perruchoud R (1987) Determining prebaked anode properties for aluminum production. JOM 39(11):43–45. https://doi.org/10.1007/BF03257539

    Article  CAS  Google Scholar 

  34. Belitskus DL (1993) An evaluation of relative effects of coke, formulation, and baking factors on aluminum reduction cell anode performance. Light Metals 1993:677–681

    Google Scholar 

  35. Suriyapraphadilok U, Andersen JM, Halleck P, Grader A (2005) Anode butt cores: physical characterization and reactivity. JOM 57(2):35–41. https://doi.org/10.1007/s11837-005-0213-z

    Article  CAS  Google Scholar 

  36. Alscher A, Wildforster R (1990) Performance of binder pitch with decreased QI-content in anode making—formation, nature, properties and substitution of quinoline insolubles. Light Metals 1990:232–238

    Google Scholar 

  37. Tayanchin AS, Frizorger VK, Kravtzova YD, Byront VS (2005) Studying mesophase contents in pitches from different sources. Light Metals 623–627

  38. Sverdlin VA, Vedernikov GF, Fyodorov VK (1992) Optimization of technological parameters of aluminum production pot anode block vibration forming. Light Metals 1992:725–730

    Google Scholar 

  39. Auguie D, Oberlin M, Oberlin A, Hyvernat P (1981) Formation of thin mesophase layers at the interface between filler and binder in prebaked anodes. Effect of mixing on mesophase. Carbon 19(4):277–284. https://doi.org/10.1016/0008-6223(81)90073-7

    Article  CAS  Google Scholar 

  40. Couderc P, Hyvernat P, Lemarchand JL (1986) Correlations between ability of pitch to penetrate coke and the physical characteristics of prebaked anodes for the aluminium industry. Fuel 65(2):281–287. https://doi.org/10.1016/0016-2361(86)90022-0

    Article  CAS  Google Scholar 

  41. Rhedey PJ (1990) Laboratory evaluation of a low quinoline insolubles coal-tar pitch as anode binder. Light Metals 1990:605–608

    Google Scholar 

  42. Perruchoud RC, Meier MW, Werner K, Fischer WK, Olfgang HP (2001) Anode properties, cover materials and cell operation. Light Metals 2001:695–699

    Google Scholar 

  43. Perez M, Granda M, Santamaria R, Vina JA, Menedez R (2003) Formulation, structure and properties of carbon anodes from coal-tar pitch/petroleum pitch blends. Light Metals 2003:495–501

    Google Scholar 

  44. Fernandez JJ, Alonso F (2004) Anthracene oil synthetic pitch: a novel approach to hybrid pitches. Light Metals 499–502

  45. Azari K, Alamdari H, Aryanpour GR, Picard D, Fafard M (2013) Mixing variables for prebaked anodes used in aluminum production. Powder Technol 235:341–348. https://doi.org/10.1016/j.powtec.2012.10.043

    Article  CAS  Google Scholar 

  46. Mchenry HR, Baron JT, Krupinski KC (1998) Development of anode binder pitch laboratory characterization methods. Light Metals 1989:769–774

    Google Scholar 

  47. Vidvei T, Eidet T, Sørlie M (2003) Paste granulometry and soderberg anode properties. Light Metals 2003:569–574

    Google Scholar 

  48. Azari K (2013) Investigation of the materials and paste relationships to improve forming process and anode quality, Ph.D. Thesis, Université Laval (Canada)

  49. Thibodeau S, Chaouki H, Alamdari H, Ziegler D, Fafard M (2014) High temperature compression test to determine the anode paste mechanical properties. Light Metals 2014:1129–1134

    Google Scholar 

  50. Zaidani M, Abu Al-Rub R, Tajik AR, Shamim T (2016) Effects of flue wall deformation on aluminum anode baking homogeneity and temperature distribution. the international committee for study of bauxite, alumina & aluminum–ICSOBA 2016. Travaux 45:367–369

    Google Scholar 

  51. Bain GA, Pruneau JP, Williams J (1971) The effect of prebake anode baking temperature on potroom performance. Light Metals 1971:444–449

    Google Scholar 

  52. Dreyer C (1989) Anode reactivity influence of the baking process. Light Metals 1989:478–485

    Google Scholar 

  53. Molenaar D, Sadler BA (2014) Anode rodding basics. Light Metals 2014:1263–1268

    Google Scholar 

  54. Russell AS (1981) Pitfalls and pleasures in new aluminum process development. Metall Trans B 12(2):203–215. https://doi.org/10.1007/BF02654453

    Article  Google Scholar 

  55. Wang Z, Friis J, Ratvik AP (2018) Transport of sodium in TiB2 materials investigated by a laboratory test and DFT calculations. Light Metals 2018:1321–1328

    Google Scholar 

  56. Heidari H, Alamdari H, Dubé D, Schulz R (2012) Pressureless sintering of TiB2-based ceramics with Ti–Fe additives: sintering mechanism and stability in liquid aluminum. Adv Eng Mater 14(9):802–809. https://doi.org/10.1002/adem.201200067

    Article  CAS  Google Scholar 

  57. Galasiu I, Galasiu R, Thonstad J (2007) Inert anodes for aluminium electrolysis. Aluminium, Düsseldorf

    Google Scholar 

  58. Hay SJ, Metson JB, Hylan MM (2004) Sulfur speciation in aluminum smelting anodes. Ind Eng Chem Res 43(7):1690–1700. https://doi.org/10.1021/ie0301031

    Article  CAS  Google Scholar 

  59. Edwards L, Backhouse N, Darmstadt H, Dion MJ (2012) Evolution of anode grade coke quality. Light Metals 2012:1207–1212

    Google Scholar 

  60. Elkasabi Y, Darmstadt H, Boateng AA (2018) Renewable biomass-derived coke with texture suitable for aluminum smelting anodes. ACS Sustain Chem Eng 6(10):13324–13331. https://doi.org/10.1021/acssuschemeng.8b02963

    Article  CAS  Google Scholar 

  61. Elkasabi Y, Omolayo Y, Saptari S (2021) Continuous calcination of biocoke/petcoke blends in a rotary tube furnace. ACS Sustain Chem Eng 9(2):695–703. https://doi.org/10.1021/acssuschemeng.0c06307

    Article  CAS  Google Scholar 

  62. Huang X, Kocaefe D, Kocaefe Y (2018) Utilization of biocoke as a raw material for carbon anode production. Energy Fuels 32(8):8537–8544. https://doi.org/10.1021/acs.energyfuels.8b01832

    Article  CAS  Google Scholar 

  63. Amara B, Faouzi FE, Kocaefe D, Kocaefe Y, Bhattacharyay D, Côté J, Gilbert A (2021) Modification of biocoke destined for the fabrication of anodes used in primary aluminum production. Fuel 304:121352. https://doi.org/10.1016/j.fuel.2021.121352

    Article  CAS  Google Scholar 

  64. Hussein A, Larachi F, Ziegler D, Alamdari H (2016) Effects of heat treatment and acid washing on properties and reactivity of charcoal. Biomass Bioenerg 90:101–113. https://doi.org/10.1016/j.biombioe.2016.03.041

    Article  CAS  Google Scholar 

  65. Hussein A, Fafard M, Ziegler D, Alamdari H (2017) Effects of charcoal addition on the properties of carbon anodes. Metals 7(3):98. https://doi.org/10.3390/met7030098

    Article  CAS  Google Scholar 

  66. Hussein A, Lu Y, Mollaabbasi R, Tessier J, Alamdari H (2020) Bio-pitch as a binder in carbon anodes for aluminum production: bio-pitch properties and its interaction with coke particles. Fuel 275:117875. https://doi.org/10.1016/j.fuel.2020.117875

    Article  CAS  Google Scholar 

  67. Lu Y, Li D, Huang X, Picard D, Mollaabbasi R, Ollevier T, Alamdari H (2020) Synthesis and characterization of bio-pitch from bio-oil. ACS Sustain Chem Eng 8(31):11772–11782. https://doi.org/10.1021/acssuschemeng.0c03903

    Article  CAS  Google Scholar 

  68. Lu Y, Mollaabbasi R, Picard D, Ziegler D, Alamdari H (2019) Physical and chemical characterization of bio-pitch as a potential binder for anode. Light Metals 2019:1229–1235

    Google Scholar 

  69. Jahrsengene G, Rørvik S, Støre A, Wang L, Skreiberg Ø (2021) Production of Bio-binders from pyrolysis condensates and its interaction with calcined petroleum coke. The International Committee for Study of Bauxite, Alumina & Aluminum–ICSOBA 2021. Travaux 50:515–524

    Google Scholar 

  70. Lu Y, Hussein A, Lauzon-Gauthier J, Ollevier T, Alamdari H (2021) Biochar as an additive to modify biopitch binder for carbon anodes. ACS Sustain Chem Eng 9(36):12406–12414. https://doi.org/10.1021/acssuschemeng.1c04941

    Article  CAS  Google Scholar 

  71. Hussein A, Picard D, Alamdari H (2021) Biopitch as a binder for carbon anodes: impact on carbon anode properties. ACS Sustain Chem Eng 9(12):4681–4687. https://doi.org/10.1021/acssuschemeng.1c00618

    Article  CAS  Google Scholar 

  72. Sun M, Mollaabbaasi R, Li B, Alamdari H, Fafard M, Taghavi S-M (2019) Effects of contact angle on single and multiscale bubble motions in the aluminum reduction cell. Ind Eng Chem Res 58(37):17568–17582. https://doi.org/10.1021/acs.iecr.9b03656

    Article  CAS  Google Scholar 

  73. Sun M, Mollaabbaasi R, Alamdari H, Fafard M, Taghavi S-M (2020) Single and multiscale bubble motions beneath an inclined downward-facing surface in the aluminum reduction cell. Ind Eng Chem Res 59(17):8403–8415. https://doi.org/10.1021/acs.iecr.0c00793

    Article  CAS  Google Scholar 

  74. Energy Efficiency and Renewable (2007) U.S. Energy Requirements for Aluminum Production: Historical Perspective, Theoretical Limits and Current Practices. http://www.congnghe-sx.com/upload/files/al_theoretical(1).pdf

  75. Grjotheim K, Conrad K, Malinovsky M, Matiasovsky K, Thonstad J (1977) Aluminum electrolysis. The chemistry of the Hall-Heroult Process. Aluminium, Düsseldorf

    Google Scholar 

  76. Kuang ZL, Thonstad J, Rolseth S, Sørlie M (1996) Effect of baking temperature and anode current density on anode carbon consumption. Metall Mater Trans B 27(2):177–183. https://doi.org/10.1007/BF02915043

    Article  Google Scholar 

Download references

Funding

The study was funded by CRSNG/NSERC (Natural Sciences and Engineering Research Council of Canada) (Grant no. CRDPJ 476564 - 2014)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houshang Alamdari.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ratvik, A.P., Mollaabbasi, R. & Alamdari, H. Aluminium production process: from Hall–Héroult to modern smelters. ChemTexts 8, 10 (2022). https://doi.org/10.1007/s40828-022-00162-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40828-022-00162-5

Keywords

Navigation