Skip to main content
Log in

Carbothermic Reduction of Nickeliferous Laterite Ores for Nickel Pig Iron Production in China: A Review

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Both the consumption and production of crude stainless steel in China rank first in the world. In 2011, the nickel production in China amounted to 446 kilotons, with the proportion of electrolytic nickel and nickel pig iron (NPI) registering 41.5% and 56.5%, respectively. NPI is a low-cost feedstock for stainless steel production when used as a substitute for electrolytic nickel. The existing commercial NPI production processes such as blast furnace smelting, rotary kiln-electric furnace smelting, and Krupp-Renn (Nipon Yakin Oheyama) processes are discussed. As low-temperature (below 1300°C) reduction of nickeliferous laterite ores followed by magnetic separation could provide an alternative avenue without smelting at high temperature (~1500°C) for producing ferronickel with low cost, the fundamentals and recent developments of the low-temperature reduction of nickeliferous laterite ores are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R.R. Moskalyk and A.M. Alfantazi, Miner. Eng. 15, 593 (2002).

    Article  Google Scholar 

  2. A.D. Dalvi, W.G. Bacon, and R. Osborne, Proc. PDAC 2004 Int. Convention, Trade Show & Investors Exchange (The Prospectors and Developers Association of Canada, Toronto, Canada, 2004), pp. 1–27.

  3. M. Landers, M. Grafe, R. Gilkes, M. Saunders, and M. Wells, Aust. J. Earth Sci. 58, 745 (2011).

    Article  Google Scholar 

  4. S. Gleeson, C. Butt, and M. Elias, SEG Newsl. 54, 11 (2003).

    Google Scholar 

  5. J. Golightly, Proc. Int. Laterite Symp. (Society of Mining Engineers, American Institute of Mining, Metallurgical, and Petroleum Engineers, New Orleans, LA, 1979), pp. 38–56.

  6. A.E.M. Warner, C.M. Diaz, A.D. Dalvi, P.J. Mackey, and A.V. Tarasov, JOM 58 (4), 11 (2006).

    Article  Google Scholar 

  7. B.A. Wills and T. Napier-Munn, Wills’ Mineral Processing Technology: An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery, 7th ed. (Burlington, MA: Butterworth-Heinemann, 2006).

    Google Scholar 

  8. B. Whittington and D. Muir, Miner. Process. Extr. Metall. Rev. 21, 527 (2000).

    Article  Google Scholar 

  9. D.H. Rubisov and V.G. Papangelakis, Hydrometallurgy 58, 13 (2000).

    Article  Google Scholar 

  10. K. Liu, Q.Y. Chen, H.P. Hu, Z.L. Yin, and B.K. Wu, Hydrometallurgy 104, 32 (2010).

    Article  Google Scholar 

  11. X.-Y. Guo, W.-T. Shi, D. Li, and Q.-H. Tian, Trans. Nonferr. Metal. Soc. 21, 191 (2011).

    Article  Google Scholar 

  12. X.J. Zhai, Y. Fu, X. Zhang, L.Z. Ma, and F. Xie, Hydrometallurgy 99, 189 (2009).

    Article  Google Scholar 

  13. G. Senanayake, A. Senaputra, and M.J. Nicol, Hydrometallurgy 105, 60 (2010).

    Article  Google Scholar 

  14. A.N. Nikoloski and M.J. Nicol, Hydrometallurgy 105, 54 (2010).

    Article  Google Scholar 

  15. J. De Graaf, Hydrometallurgy 5, 47 (1979).

    Article  Google Scholar 

  16. M.B. Mourao, C. Takano, N. Alonso-Falleiros, C.A.S. Giraldo, A. Pescarmona, A.B. da Veiga, and A.A.F. Schettino, Global Symposium on Recycling, Waste Treatment and Clean Technology, REWAS 2008 (Warrendale, PA: TMS, 2008), pp. 879–885.

  17. M.A. Rhamdhani, J. Chen, T. Hidayat, E. Jak, and P. Hayes, European Metallurgical Conference 2009, vol. 3 (Clausthal-Zellerfeld, Germany: GDMB Informationsgesellschaft GmbH, 2009), pp. 899–914.

  18. R.G. McDonald and B.I. Whittington, Hydrometallurgy 91, 35 (2008).

    Article  Google Scholar 

  19. R.G. McDonald and B.I. Whittington, Hydrometallurgy 91, 56 (2008).

    Article  Google Scholar 

  20. G.K. Das and J.A.B. De Lange, Hydrometallurgy 105, 264 (2011).

    Article  Google Scholar 

  21. G. Li, M. Rao, T. Jiang, Q. Huang, and Z. Peng, Miner. Eng. 24, 859 (2011).

    Article  Google Scholar 

  22. W. Luo, Q.M. Feng, L.M. Ou, G.F. Zhang, and Y. Chen, Miner. Eng. 23, 458 (2010).

    Article  Google Scholar 

  23. W. Luo, Q.M. Feng, L.M. Ou, G.F. Zhang, and Y.P. Lu, Hydrometallurgy 96, 171 (2009).

    Article  Google Scholar 

  24. K. Liu, Q. Chen, and H. Hu, Hydrometallurgy 98, 281 (2009).

    Article  Google Scholar 

  25. J. Nayak, Trans. Indian Inst. Met. 38, 241 (1985).

    Google Scholar 

  26. C.T. Harris, J.G. Peacey, and C.A. Pickles (Paper presented at the Pyrometallurgy of Nickel and Cobalt 2009 Proceedings of the 48th Conference of Metallurgists, Sudbury, Ontario, Canada, 2009).

  27. T. Norgate and S. Jahanshahi, Miner. Eng. 24, 698 (2011).

    Article  Google Scholar 

  28. World Bureau of Metal Statistics, World Metal Statistics Yearbook, http://www.world-bureau.com/services.asp.

  29. J. Johnson, B.K. Reck, T. Wang, and T.E. Graedel, Energy Policy 36, 181 (2008).

    Article  Google Scholar 

  30. J. Kim, G. Dodbiba, H. Tanno, K. Okaya, S. Matsuo, and T. Fujita, Miner. Eng. 23, 282 (2010).

    Article  MATH  Google Scholar 

  31. London Metal Exchange, Nickel Production and Consumption, 2011, http://www.lme.com/metals/non-ferrous/nickel/production-and-consumption.

  32. Stainless Steel Council of China Special Steel Enterprises Association, http://www.cssc.org.cn/news_index4.php?col_id=61.

  33. Y.P. Zhang, Y.S. Zhou, Z.Y. Li, and W.G. Li, Ferro-Alloys 38, 18 (2007).

    Article  Google Scholar 

  34. X.J. Guo (Paper presented at the Pyrometallurgy of Nickel and Cobalt 2009 Proceedings of the 48th Conference of Metallurgists, Sudbury, Ontario, Canada, 2009).

  35. C. Robert (Paper presented at the 3rd Euronickel Conference, Helsinki, Finland, 2012).

  36. S. Liu, EP Patent 1,927,667 (2008).

  37. S. Liu, EP Patent 1,927,666 (2008).

  38. J.-M. Pang, P.-M. Guo, and P. Zhao, J. Iron Steel Res. 23, (2011).

  39. J.-J. Liu, G.-R. Hu, and Z.-D. Peng, Rare Met. Cem. Carbides 39, 62 (2011).

    Google Scholar 

  40. X. Liu, X. Jiang, N. Lu, and L. Zhifang, Ferro-Alloys 205, 6 (2009).

    Article  Google Scholar 

  41. National Development and Reform Commission (NDRC) of China, The National Development and Reform Commission, 2011. http://www.ndrc.gov.cn/zcfb/zcfbl/2011ling/t20110426_408008.htm.

  42. C. Wang, F. Yin, Y. Chen, Z. Wang, and J. Wang, Chin. J. Nonferr. Met. 18, s1 (2008).

    Article  Google Scholar 

  43. J. Chen and J. Tan, Ferro-Alloys 200, 13 (2008).

    Google Scholar 

  44. X.-M. Li, L. Tang, and S.-L. Liu, Ferro-Alloys 195, 24 (2007).

    Google Scholar 

  45. W.H. Dennis, Metallurgy of the Ferrous Metals (New York: Pitman Publishing, 1963).

    Google Scholar 

  46. R. Bergman, CIM Bull. 96, 127 (2003).

    Google Scholar 

  47. H. Tsuji, ISIJ Int. 52, 333 (2012).

    Article  Google Scholar 

  48. T. Watanabe, S. Ono, H. Arai, and T. Matsumori, Int. J. Miner. Process. 19, 173 (1987).

    Article  Google Scholar 

  49. T. Matsumori, T. Ishizuka, and T. Matsuda, CIM (Canada: Sudbury, 1997).

    Google Scholar 

  50. H. Tsuji, ISIJ Int. 52, 1000 (2012).

    Article  Google Scholar 

  51. C. Southwestern Engineering and B. Zontelli, Feasibility of the Krupp-Renn Process for Treating the Lean Iron Ores of the Mesabi Range: A Digest (Washington, DC: U.S. Department of Commerce, Area Redevelopment Administration, 1964), p. 27.

  52. M.G. King, JOM 57 (7), 35 (2005).

    Article  Google Scholar 

  53. I. Maragkos, I.P. Giannopoulou, and D. Panias, Miner. Eng. 22, 196 (2009).

    Article  Google Scholar 

  54. T. Norgate and S. Jahanshahi, Miner. Eng. 23, 65 (2010).

    Article  Google Scholar 

  55. M. Gavin, Ore Geol. Rev. 38, 9 (2010).

    Article  Google Scholar 

  56. D.Q. Zhu, Y. Cui, K. Vining, S. Hapugoda, J. Douglas, J. Pan, and G.L. Zheng, Int. J. Miner. Process. 106-109, 1 (2012).

    Article  Google Scholar 

  57. G. Li, T. Shi, M. Rao, T. Jiang, and Y. Zhang, Miner. Eng. 32, 19 (2012).

    Article  Google Scholar 

  58. G.-H. Li, M.-J. Rao, T. Jiang, Q.-Q. Huang, T.-M. Shi, and Y.-B. Zhang, Chin. J. Nonferr. Met. 21, 3137 (2011).

    Google Scholar 

  59. G.-H. Li, M.-J. Rao, T. Jiang, T.-M. Shi, and Q.-Q. Huang, Chin. J. Nonferr. Met. 22, 274 (2012).

    Google Scholar 

  60. M. Jiang, T. Sun, Z. Liu, J. Kou, N. Liu, and S. Zhang, Int. J. Miner. Process. 123, 32 (2013).

    Article  Google Scholar 

  61. D. Zhu, Z. Guolin, J. Pan, Q. Li, Y. An, J. Zhu, and Z. Liu, J. Cent. South Univ. (Sci Technol) 44, 1 (2013).

    Google Scholar 

  62. W. Liang, H. Wang, and J. Fu, J. Cent. South Univ. Sci. Technol. 42, 2173 (2011).

    Google Scholar 

  63. M. Jiang, T.-C. Sun, Z.-G. Liu, J. Kou, N. Liu, Y.-Y. Cao, and S.-Y. Zhang, Min. Metall. Eng. 32, 77 (2012).

    Google Scholar 

  64. Q. Li, Y. Cui, and D. Zhu (Paper presented at The Australasian Institute of Mining and Metallurgy 25th International Mineral Processing Congress (IMPC), Brisbane, Australia, 2010), pp. 1549–1556.

  65. Q. Shi, G. Qiu, and X. Wang, Gold 30, 46 (2009).

    Google Scholar 

  66. D.-H. Huang, J.-L. Zhang, C.-C. Lin, and R. Mao, J. Univ. Sci. Technol. B. 33, 1442 (2011).

    Google Scholar 

  67. J. Canterford, Miner. Sci. Eng 7, 3 (1975).

    Google Scholar 

  68. M. Rao (Master’s Thesis, Central South University, 2010).

  69. N. Brett, K. MacKenzie, J. Sharp, and Q. Rev, Chem. Soc. 24, 185 (1970).

    Google Scholar 

  70. A. Manceau, G. Calas, and A. Decarreau, Clay Miner. 20, 367 (1985).

    Article  Google Scholar 

  71. M. Valix and W.H. Cheung, Miner. Eng. 15, 607 (2002).

    Article  Google Scholar 

  72. F. O’Connor, W. Cheung, and M. Valix, Int. J. Miner. Process. 80, 88 (2006).

    Article  Google Scholar 

  73. S. Li and K. Coley (Paper presented at the Fundamentals of Metallurgical Processing: The James M. Toguri Symposium as Held at the 39th Annual Conference of Metallurgists of CIM, Ottawa, Canada, 2000), pp. 179–192.

  74. Y.F. Chang, X.J. Zhai, Y. Fu, L.Z. Ma, B.C. Li, and T.A. Zhang, Trans. Nonferr. Met. Soc. 18, 969 (2008).

    Article  Google Scholar 

  75. J.H. Li, X.H. Li, Q.Y. Hu, Z.X. Wang, Y.Y. Zhou, J.C. Zheng, W.R. Liu, and L.J. Li, Hydrometallurgy 99, 84 (2009).

    Article  Google Scholar 

  76. C.J. Hallett, Nickel-Cobalt 97: Proceedings of the Nickel Cobalt International Symposium (Montréal, Canada: CIM, 1997), pp. 299–312.

  77. C. Pickels (Paper presented at the International Symposium on Nickel and Cobalt 2005, Calgary, Canada, 2005), pp. 285–304.

  78. M.C.E. Bell and R. Sridhar, U.S. patent 4,049,444 (1977).

    Google Scholar 

  79. W.J. Crama and A.H. Baas, U.S. patent 4,490,174 (1984).

    Google Scholar 

  80. J. Lu, S. Liu, J. Shangguan, W. Du, F. Pan, and S. Yang, Miner. Eng. 49, 154 (2013).

    Article  Google Scholar 

  81. S. Mrowec and K. Przybylski, Oxid. Met. 23, 107 (1985).

    Article  Google Scholar 

  82. T. Shi (Master’s Thesis, Central South University, 2012).

  83. R.M. German, P. Suri, and S.J. Park, J. Mater. Sci. 44, 1 (2009).

    Article  Google Scholar 

  84. M. Valix and W.H. Cheung, Miner. Eng. 15, 523 (2002).

    Article  Google Scholar 

  85. A. Nestoridis, I. Financial Mining, C. Shipping, Eds. (US, 1977), vol. 670224.

  86. G. Li, M. Rao, T. Jiang, Y. Zhang, and Q. Li, Supplemental Proc.: Vol. 1: Materials Processing and Properties (Warrendale, PA: TMS, 2010), pp. 489–496.

  87. C.M. Diaz, C.A. Landolt, A. Vahed, A.E.M. Warner, and J.C. Taylor, JOM 40, 28 (1988).

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to express their thanks to the Program for New Century Excellent Talents in University (NCET–11–0515) and the Fundamental Research Funds for the Central Universities and the Hunan Provincial Innovation Foundation for Postgraduate (CX2011B124) for financial support of this research. Special thanks go to Dr. Phillip J. Mackey (P.J. Mackey Technology Inc.) and Dr. Zhiwei Peng (Department of Materials Science and Engineering, Michigan Technological University) for helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanghui Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, M., Li, G., Jiang, T. et al. Carbothermic Reduction of Nickeliferous Laterite Ores for Nickel Pig Iron Production in China: A Review. JOM 65, 1573–1583 (2013). https://doi.org/10.1007/s11837-013-0760-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-013-0760-7

Keywords

Navigation