Skip to main content
Log in

Hierarchical bioactive materials for tissue reconstruction: Integrated design and manufacturing challenges

  • Biomaterials for Regenerative Medicine
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Although the paradigm shift from synthetic implants and tissue grafts to regenerative-medicine-based tissue reconstruction has been promised for well over a decade, the reality has yet to emerge. A significant reason for this delay is that regenerative medicine reconstruction solutions involve complex systems in which bioresorbable materials are integrated with surface modifications delivering cells and growth factors. These systems must not only fill complex shapes and provide temporary mechanical function; they must deliver biologic factors that stimulate tissue growth in a controlled, safe, yet rapid manner. Finally, the materials should degrade on a timeline matched to the time it takes to grow tissues. As such, these material device systems are multifunctional and require design techniques that can address multifunctionality, coupled with multiple material manufacturing processes that can be integrated to achieve the design. In this paper, we review these design and manufacturing processes as well as the challenges to integrate these multiple design and manufacturing processes to engineer bioactive material devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Kraus, Carnegie(New York: John Wiley & Sons, 2002).

    Google Scholar 

  2. S.J. Hollister, Nat. Mater., 4(7) (2005), pp. 518–524.

    Article  CAS  Google Scholar 

  3. A. Ratcliffe, Translational Approaches in Tissue Engineering and Regenerative Medicine, ed. J. Mao, G. Vunjak-Novakovic, A.G. Mikos, and A. Atala (Boston, MA: Artech House, 2008), pp. 463–472.

    Google Scholar 

  4. S.J. Hollister, Biofabrication, 1 (2009), pp. 1–13.

    Article  Google Scholar 

  5. F. Wang, J.D. Sipe, and C.A. Kelley, Translational Approaches in Tissue Engineering and Regenerative Medicine, ed. J. Mao, G. Vunjak-Novakovic, A.G. Mikos, and A. Atala (Boston, MA: Artech House, 2008), pp. 445–462.

    Google Scholar 

  6. S.J. Hollister, Adv. Mater., 21 (2009), pp. 3330–3142.

    Article  CAS  Google Scholar 

  7. W.B. Arthur, The Nature of Technology: What it is and How it Evolves (New York: Free Press, 2009).

    Google Scholar 

  8. J. He, J. Sun, and M.W. Deem, Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 79(3 Pt 1) (2009), 031907.

    Article  Google Scholar 

  9. M.E. Newman, Proc. Nat’l. Acad. Sci. USA, 103(23) (2006), pp. 8577–8582.

    Article  CAS  Google Scholar 

  10. J. Sun and M.W. Deem, Phys. Rev. Lett., 99(22) (2007), 228107.

    Article  Google Scholar 

  11. J.H. Brekke and J.M. Toth, J. Biomed. Mater. Res., 43 (1998), pp. 380–398.

    Article  CAS  Google Scholar 

  12. S.J. Hollister, E.E. Liao, E.N. Moffitt, C.G. Jeong, and J.M. Williams, in Fundamentals of Tissue Engineering and Regenerative Medicine, ed. U. Meyer (New York: Springer-Verlag, 2009), pp. 521–537.

    Chapter  Google Scholar 

  13. D.W. Hutmacher, J. Biomater. Sci. Polym. Ed., 12 (2001), pp. 107–124.

    Article  CAS  Google Scholar 

  14. M.J. Yaszemski, R.G. Payne, W.C. Hayes, R. Langer, and A.G. Mikos, Biomaterials, 17 (1996), pp. 175–185.

    Article  CAS  Google Scholar 

  15. J.D. Humphrey, Cardiovascular Solid Mechanics: Cells, Tissues and Organs (New York: Springer-Verlag, 2002).

    Google Scholar 

  16. J.M. Guedes and N. Kikuchi, Computer Methods in Applied Mechanics and Engineering, 83 (1990), pp. 143–198.

    Article  Google Scholar 

  17. S.J. Hollister, J.M. Brennan, and N. Kikuchi, J. Biomech., 27 (1994), pp. 433–444.

    Article  CAS  Google Scholar 

  18. S.J. Hollister, D.P. Fyhrie, K.J. Jepsen, and S.A. Goldstein, J. Biomech., 24 (1991), pp. 825–839.

    Article  CAS  Google Scholar 

  19. E. Sanchez-Palencia, Non-homogeneous Media and Vibration Theory (Berlin: Springer-Verlag, 1980).

    Google Scholar 

  20. B. Aoubiza, J.M. Crolet, and A. Meunier, J. Biomech., 29 (1996), pp. 1539–1547.

    CAS  Google Scholar 

  21. L. Yin and D.M. Elliott, J. Biomech., 38(8) (2005), pp. 1674–1684.

    Article  Google Scholar 

  22. J.M. Kemppainen and S.J. Hollister, Biomaterials, 31(2) (2010), pp. 279–287.

    Article  CAS  Google Scholar 

  23. N.L. Nerurkar, D.M. Elliott, and R.L. Mauck, J. Orthop. Res., 25(8) (2007), pp. 1018–1028.

    Article  CAS  Google Scholar 

  24. R.J. Shipley et al., J. Theor. Biol., 259(3) (2009), pp. 489–502.

    Article  CAS  Google Scholar 

  25. J.M. Williams et al., Biomaterials, 26(23)(2005), pp. 4817–4827.

    Article  CAS  Google Scholar 

  26. O. Sigmund, Int. J. Solids Struc., 31 (1994), pp. 2313–2329.

    Article  Google Scholar 

  27. M.P. Bendsoe and N. Kikuchi, Comput. Methods Appl. Mech. Eng., 71(2) (1988), pp. 197–224.

    Article  Google Scholar 

  28. S.J. Hollister, R.D. Maddox, and J.M. Taboas, Biomaterials, 23(20) (2002), pp. 4095–4103.

    Article  CAS  Google Scholar 

  29. C.Y. Lin, N. Kikuchi, and S.J. Hollister, J. Biomech., 37(5) (2004), pp. 623–636.

    Article  Google Scholar 

  30. H. Kang, C. Lin, and S.J. Hollister, Structural and Multidisciplinary Optimization, 42(4) (2010), pp. 633–644.

    Article  Google Scholar 

  31. T. Adachi, Y. Osako, M. Tanaka, M. Hojo, and S.J. Hollister, Biomaterials, 27(21) (2006), pp. 3964–3972.

    Article  CAS  Google Scholar 

  32. H. Khayyeri, S. Checa, M. Tagil, F.J. O’Brien, and P.J. Prendergast, J. Mater. Sci. Mater. Med., 21(8) (2010), pp. 2331–2336.

    Article  CAS  Google Scholar 

  33. L.A. McMahon, F.J. O’Brien, and P.J. Prendergast, Regen. Med., 3(5) (2008), pp. 743–759.

    Article  CAS  Google Scholar 

  34. C. Sandino, S. Checa, P.J. Prendergast, and D. Lacroix, Biomaterials, 31(8) (2010), pp. 2446–2452.

    Article  CAS  Google Scholar 

  35. J.A. Sanz-Herrera, J.M. Garcia-Aznar, and M. Doblare, Biomech. Model. Mechanobiol., 7(5) (2008), pp. 355–366.

    Article  CAS  Google Scholar 

  36. D.R. Carter, Calcif. Tissue Int., 36-Suppl. 1 (1984), pp. S19–S24.

    Article  Google Scholar 

  37. R. Huiskes, H. Weinans, H.J. Grootenboer, M. Dalstra, B. Fudala, and T.J. Slooff, J. Biomech., 20(11–12) (1987), pp. 1135–1150.

    Article  CAS  Google Scholar 

  38. S. Sturm, S. Zhou, Y.W. Mai, and Q. Li, J. Biomech., 43(9) (2010), pp. 1738–1744.

    Article  Google Scholar 

  39. P.G. Coelho, P.R. Fernandes, H.C. Rodrigues, J.B. Cardoso, and J.M. Guedes, J. Biomech., 42(7) (2009), pp. 830–837.

    Article  CAS  Google Scholar 

  40. S.M. Peltola, F.P. Melchels, D.W. Grijpma, and M. Kellomaki, Ann. Med., 40(4) (2008), pp. 268–280.

    Article  CAS  Google Scholar 

  41. J.M. Taboas, R.D. Maddox, P.H. Krebsbach, and S.J. Hollister, Biomaterials, 24(1) (2003), pp. 181–194.

    Article  CAS  Google Scholar 

  42. R.A. Giordano, B.M. Wu, S.W. Borland, L.G. Cima, E.M. Sachs, M.J. Cima, J. Biomater. Sci. Polym. Ed., 8(1) (1996), pp. 63–75.

    Article  CAS  Google Scholar 

  43. R.A. Levy, T.M. Chu, J.W. Halloran, S.E. Feinberg, and S. Hollister, Amer. J. Neuroradiol., 18(8) (1997), pp. 1522–1525.

    CAS  Google Scholar 

  44. A. Park, B. Wu, and L.G. Griffith, J. Biomater. Sci. Polym. Ed., 9(2) (1998), pp. 89–110.

    Article  CAS  Google Scholar 

  45. M.N. Cooke, J.P. Fisher, D. Dean, C. Rimnac, and A.G. Mikos, J. Biomed. Mater. Res. B Appl. Biomater., 64(2) (2003), pp. 65–69.

    Article  Google Scholar 

  46. F.P. Melchels, J. Feijen, and D.W. Grijpma, Biomaterials, 30(23–24) (2009), pp. 3801–3809.

    Article  CAS  Google Scholar 

  47. F.P. Melchels, K. Bertoldi, R. Gabbrielli, A.H. Velders, J. Feijen, and D.W. Grijpma, Biomaterials, 31(27) (2010), pp. 6909–6916.

    Article  CAS  Google Scholar 

  48. K. Arcaute, B.K. Mann, and R.B. Wicker, Tissue Eng. Part C Methods(in press).

  49. S. Eshraghi and S. Das, Acta Biomater., 6(7) (2010), pp. 2467–2476.

    Article  CAS  Google Scholar 

  50. M.H. Smith et al., Int. J. Med. Robot., 3(3) (2007), pp. 207–216.

    CAS  Google Scholar 

  51. K.H. Tan et al., Biomed. Mater. Eng., 15(1–2) (2005), pp. 113–124.

    CAS  Google Scholar 

  52. W.Y. Zhou, S.H. Lee, M. Wang, W.L. Cheung, and W.Y. Ip, J. Mater. Sci. Mater. Med., 19(7) (2008), pp. 2535–2540.

    Article  CAS  Google Scholar 

  53. F.E. Wiria, C.K. Chua, K.F. Leong, Z.Y. Quah, M. Chandrasekaran, and M.W. Lee, J. Mater. Sci. Mater. Med., 19(3) (2008), pp. 989–996.

    Article  CAS  Google Scholar 

  54. A. Butscher, M. Bohner, S. Hofmann, L. Gauckler, and R. Muller, Acta Biomater. (in press).

  55. M.G. Li, X.Y. Tian, and X.B. Chen, Biofabrication, 1(3) (2009), 032001.

    Article  CAS  Google Scholar 

  56. D.W. Hutmacher, T. Schantz, I. Zein, K.W. Ng, S.H. Teoh, and K.C. Tan, J. Biomed. Mater. Res., 55(2) (2001), pp. 203–216.

    Article  CAS  Google Scholar 

  57. C.X. Lam, D.W. Hutmacher, T.J. Schantz, M.A. Woodruff, and S.H. Teoh, J. Biomed. Mater. Res. A, 90(3) (2009), pp. 906–919.

    Google Scholar 

  58. C.X. Lam, D.W. Hutmacher, J.T. Schantz, M.A. Woodruff, and S.H. Teoh, J. Biomed. Mater. Res. A, 90(3) (2009), pp. 906–919.

    Google Scholar 

  59. B. Rai, M.E. Oest, K.M. Dupont, K.H. Ho, S.H. Teoh, and R.E. Guldberg, J. Biomed. Mater. Res. A, 81(4) (2007), pp. 888–899.

    Google Scholar 

  60. D. Rohner, D.W. Hutmacher, T.K. Cheng, M. Oberholzer, and B. Hammer, J. Biomed. Mater. Res. B Appl. Biomater., 66(2) (2003), pp. 574–580.

    Article  Google Scholar 

  61. K.H. Schuckert, S. Jopp, and S.H. Teoh, Tissue Eng. Part A, 15(3) k(2009), pp. 493–499.

    Article  CAS  Google Scholar 

  62. I. Zein, D.W. Hutmacher, K.C. Tan, and S.H. Teoh, Biomaterials, 23(4) (2002), pp. 1169–1185.

    Article  CAS  Google Scholar 

  63. J.P. Li, J.R. de Wijn, C.A. van Blitterswijk, and K. de Groot, J. Biomed. Mater. Res. A, 92(1) (2010), pp. 33–42.

    CAS  Google Scholar 

  64. P. Habibovic, U. Gbureck, C.J. Doillon, D.C. Bassett, C.A. van Blitterswijk, and J.E. Barralet, Biomaterials, 29(7) (2008), pp. 944–953.

    Article  CAS  Google Scholar 

  65. L. Moroni, J.R. de Wijn, and C.A. van Blitterswijk, Biomaterials, 27(7) (2006), pp. 974–985.

    Article  CAS  Google Scholar 

  66. H. Wang and C.A. van Blitterswijk, Biomaterials, 31(15) (2010), pp. 4322–4329.

    Article  CAS  Google Scholar 

  67. T.B. Woodfield, M. Guggenheim, B. von Rechenberg, J. Riesle, C.A. van Blitterswijk, and V. Wedler, Cell Prolif., 42(4) (2009), pp. 485–497.

    Article  CAS  Google Scholar 

  68. L. Moroni, D. Hamann, L. Paoluzzi, J. Pieper, J.R. de Wijn, and C.A. van Blitterswijk, PLoS One, 3(8) (2008), e3032.

    Article  Google Scholar 

  69. D. Schumann, A.K. Ekaputra, C.X. Lam, and D.W. Hutmacher, Methods Mol. Med., 140 (2007), pp. 101–124.

    Article  CAS  Google Scholar 

  70. V. Mironov, T. Trusk, V. Kasyanov, S. Little, R. Swaja, and R. Markwald, Biofabrication, 1(2) (2009), 022001.

    Article  CAS  Google Scholar 

  71. A. Park, B. Wu, and L.G. Griffith, J. Biomater. Sci. Polym. Ed., 9(2) (1998), pp. 89–110.

    Article  CAS  Google Scholar 

  72. H. Zhang and S. Hollister, J. Biomater. Sci. Polym. Ed., 20(14) (2009), pp. 1975–1993.

    Article  CAS  Google Scholar 

  73. H. Zhang, C.Y. Lin, and S.J. Hollister, Biomaterials, 30(25) (2009), pp. 4063–4069.

    Article  CAS  Google Scholar 

  74. H. Zhang, F. Migneco, C.Y. Lin, and S.J. Hollister, Tissue Eng. Part A, 16(11) (2010), pp. 3441–3448.

    Article  CAS  Google Scholar 

  75. W.W. Hu, Y. Elkasabi, H.Y. Chen, Y. Zhang, J. Lahann, S.J. Hollister, and P.H. Krebsbach, Biomaterials, 30 (2009), pp. 5785–5792.

    Article  CAS  Google Scholar 

  76. J. Hubbell, in Tissue Engineering, ed. Clemens van Blitterswijk et al.(Burlington, MA: Academic Press, 2008), pp. 455–482.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott J. Hollister.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hollister, S.J. Hierarchical bioactive materials for tissue reconstruction: Integrated design and manufacturing challenges. JOM 63, 56–65 (2011). https://doi.org/10.1007/s11837-011-0060-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-011-0060-z

Keywords

Navigation