Skip to main content
Log in

Improved biocomposite development of poly(vinyl alcohol) and hydroxyapatite for tissue engineering scaffold fabrication using selective laser sintering

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In scaffold guided tissue engineering (TE), temporary three-dimensional scaffolds are essential to guide and support cell proliferation. Selective Laser Sintering (SLS) is studied for the development of such scaffolds by eliminating pore spatial control problems faced in conventional scaffolds fabrication methods. SLS offers good user control over the scaffold’s microstructures by adjusting its main processing parameters, namely the laser power, scan speed and part bed temperature.

This research focuses on the improvements in the fabrication of TE scaffolds using SLS with powder biomaterials, namely hydroxyapatite (HA) and poly(vinyl alcohol) (PVA). Grinding of as-received PVA powder to varying particle sizes and two methods of mixing are investigated as the preparation process to determine a better mixing method that would enhance the mixture homogeneity. Suitable sintering conditions for the improved biocomposite are then achieved by varying the important process parameters such as laser power, scan speed and part bed temperature.

SLS fabricated samples are characterized using Fourier Transform Infrared Spectrometer (FTIR) and Scanning Electron Microscope (SEM). FTIR results show that the grinding and sintering processes neither compromise the chemical composition of the PVA nor cause undue degradation. Visual analysis of the grinding, powder mixing and sintering effect are carried out with SEM. The SEM observations show improvements in the sintering effects. The favorable outcome ascertains PVA/HA biocomposite as a suitable material to be processed by SLS for TE scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. F. GUILAK, D. L. BUTLER, S. A. GOLDSTEIN and D. MOONEY, in Functional Tissue Engineering (Springer, New York, 2004)

  2. E. BELL, in Principles of Tissue Engineering, Edited by R. P. LANZA, et al. (Academic Press, San Diego, 2000) p. 181

  3. D. J. MOONEY and A. G. MIKOS, Sci. Am. 280 (1999) 60

    Article  CAS  Google Scholar 

  4. L. G. GRIFFITH and G. NAUGHTON, Science 295 (2002) 1009

    Article  CAS  Google Scholar 

  5. C. J. KIRKPATRICK, V. KRUMP-KONVALINKOVA, R. E. UNGER, F. BITTINGER, M. OTTO and K. PETERS, Bimol. Eng. 19 (2002) 211

    Article  CAS  Google Scholar 

  6. T. V. KUMARI, U. VASUDEV, A. KUMAR and B. MENON, Trends Biomater. Artif. Organs. 15 (2002) 37

    Google Scholar 

  7. M. KAWANISHI, T. USHIDA, T. KANEKO, H. NIWA, T. FUKUBAYASHI, K. NAKAMURA, H. ODA, S. TANAKA and T. TATEISHI, Mat. Sci. Eng. C 24 (2004) 431

    Article  CAS  Google Scholar 

  8. S. J. PETER, M. J. MILLER, A. W. YASKO, M. J. YASZEMSKI and A. G. MIKOS, J. Biomed. Mater. Res.-Appl. Biomater. 43 (1998) 422

    Article  CAS  Google Scholar 

  9. T. SATO, G. CHEN, T. USHIDA, T. ISHII, N. OCHIAI, T. TATEISHI and J. TANAKA, Mat. Sci. Eng. C 24 (2004) 365

    Article  CAS  Google Scholar 

  10. H. O. SE, G. K. SOUNG, S. K. EUN, H. C. SANG and H. L. JIN, Biomaterials 24 (2003) 4011

    Article  CAS  Google Scholar 

  11. A. G. MIKOS, Y. BAO, L. G. CIMA, D. E. INGBER, J. P. VACANTI and R. LANGER, J. Biomed. Mater. Res. 27 (1993) 183

    Article  CAS  Google Scholar 

  12. D. J. MOONEY, C. L. MAZZONI, C. BREUER, K. MCNAMARA, D. HERN, J. P. VACANTI and R. LANGER, Biomaterials 17 (1996) 115

    Article  CAS  Google Scholar 

  13. V. J. CHEN and P. X. MA, Biomaterials 25 (2004) 2065

    Article  CAS  Google Scholar 

  14. J. GUAN, K. L. FUJIMOTO, M. S. SACKS and W. R. WAGNER, Biomaterials 26 (2005) 3961

    Article  CAS  Google Scholar 

  15. G. WEI and P. X. MA, Biomaterials 25 (2004) 4749

    Article  CAS  Google Scholar 

  16. R. ZHANG and P. X. MA, J. Biomed. Mater. Res. 44 (1999) 446

    Article  CAS  Google Scholar 

  17. J. J. YOON and T. G. PARK, J. Biomed. Mater. Res. 55 (2001) 401

    Article  CAS  Google Scholar 

  18. S. F. YANG, K. F. LEONG, Z. H. DU and C. K. CHUA, Tissue Eng. 7 (2001) 679

    Article  CAS  Google Scholar 

  19. D. KOCHAN, C. K. CHUA and Z. DU, Comput. Ind. 39 (1999 ) 3

    Article  Google Scholar 

  20. S. F. YANG, K. F. LEONG, Z. H. DU and C. K. CHUA, Tissue Eng. 8 (2002) 1

    Article  CAS  Google Scholar 

  21. C. K. CHUA, K. F. LEONG and C. S. LIM, in Rapid Prototyping: Principles and Applications (World Scientific, Singapore, 2003)

  22. R. Z. LEGEROS and J. P. LEGEROS, in An Introduction to Bioceramics, Edited by L. L. HENCH and J. WILSON (World Scientific, River Edge, NJ, 1993) p. 139

  23. G. LEE, J. W. BARLOW, W. C. FOX and T. B. AUFDERMORTE, in Solid Freeform Fabrication Symposium, (Austin, TX, 12–14 August, 1996), p. 15

  24. C. K. CHUA, K. F. LEONG, K. H. TAN, F. E. WIRIA and C. M. CHEAH, J. Mater. Sci. Mater. Med. 15 (2004) 1113

    Article  CAS  Google Scholar 

  25. K. H. TAN, C. K. CHUA, K. F. LEONG, M. W. NAING and C. M. CHEAH, Proc. Inst. Mech. Eng. Part H—J. Eng. Med. 219 (2004) 183

    Google Scholar 

  26. F. E. WIRIA, K. F. LEONG, C. K. CHUA and Y. LIU, Acta Biomaterialia 3 (2007) 1

    Article  CAS  Google Scholar 

  27. N. A. PEPPAS, in Hydrogels in Medicine and Pharmacy, Edited by N. A. PEPPAS (Boca Raton, CRC Press, 1987) p. 3

  28. K. H. TAN, C. K. CHUA, K. F. LEONG, C. M. CHEAH, W. S. GUI, W. S. TAN and F. E. WIRIA, Bio-Med. Mater. Eng. 15 (2005) 113

    CAS  Google Scholar 

  29. C. K. CHUA, K. F. LEONG, F. E. WIRIA, K. H. TAN and M. CHANDRASEKARAN, in International Conference on Competitive Manufacturing (COMA ‘04), Stellenbosch, South Africa, 4–6 February 2004, p. 229

  30. F. E. WIRIA, C. K. CHUA, M. CHANDRASEKARAN and K. F. LEONG, in The 3rd International Conference on Materials Processing for Properties and Performance (MP3), Singapore, 24–26 November 2004, Edited by K. A. KHOR, R. V. RAMANUJAN, C. P. OOI and J. H. ZHAO (Institute of Materials (East Asia), 2004) p. 373

  31. F. E. WIRIA, C. K. CHUA, K. F. LEONG, M. CHANDRASEKARAN and M. W. LEE, in The 2nd International Conference on Advanced Research in Virtual and Rapid Prototyping, Leiria, Portugal, 28 September–1 October 2005, Edited by P. J. BÁRTOLO, et al. (Taylor & Francis, 2005) p. 509

  32. R. M. GERMAN, in Powder Metallurgy Science (Metal Powder Industries Federation, Princeton, N.J., 1994)

  33. J. ŠUNDRICA, Int. J. Powder Metall. Powder Technol. 17 (1981) 291

    Google Scholar 

  34. M. AGARWALA, D. BOURELL, J. BEAMAN, H. MARCUS and J. BARLOW, Rapid Prototyp. J. 1 (1995) 26

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florencia Edith Wiria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiria, F.E., Chua, C.K., Leong, K.F. et al. Improved biocomposite development of poly(vinyl alcohol) and hydroxyapatite for tissue engineering scaffold fabrication using selective laser sintering. J Mater Sci: Mater Med 19, 989–996 (2008). https://doi.org/10.1007/s10856-007-3176-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-007-3176-5

Keywords

Navigation