Skip to main content

Bioactive Materials: Definitions and Application in Tissue Engineering and Regeneration Therapy

  • Chapter
  • First Online:
Biocompatible Glasses

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 53))

Abstract

The field of biomaterials has been evolving at an astonished rate in the last decades, leading to the design of bioactive materials, materials able to elicit specific and predictable cells and tissues responses. This chapter will go through the key milestones achieved during this exciting development with special emphasis on the meaning of material-driven bioactivity and its importance in the optimization of highly performing tissue regeneration and regeneration therapy methodologies. An overview on the history of bioactive glasses (bioglasses) (please consult the Editor’s note in order to clarify the usage of the terms bioglass, bioactive glass and biocompatible glass) and their biological properties will describe the huge potential of these materials in regenerative medicine applications. Finally, an introduction on stem cells and their role in the physiological development of tissues and organs will be given, shedding light on therapeutic synergistic approaches based on the use of bioactive materials and stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Williams, D.F.: On the nature of biomaterials. Biomaterials 30(30), 5897–5909 (2009)

    Article  Google Scholar 

  2. Holzapfel, B.M., et al.: How smart do biomaterials need to be? A translational science and clinical point of view. Adv. Drug Deliv. Rev. 65(4), 581–603 (2013)

    Article  Google Scholar 

  3. Ratner, B.D., Bryant, S.J.: Biomaterials: where we have been and where we are going. Annu. Rev. Biomed. Eng. 6, 41–75 (2004)

    Article  Google Scholar 

  4. Hench, L.: Biomaterials. Science 208(4446), 826–831 (1980)

    Article  Google Scholar 

  5. Hench, L.L., Thompson, I.: Twenty-first century challenges for biomaterials. J. R. Soc. Interface 7(Suppl 4), S379–S391 (2010)

    Article  Google Scholar 

  6. Shin, H., Jo, S., Mikos, A.G.: Biomimetic materials for tissue engineering. Biomaterials 24(24), 4353–4364 (2003)

    Article  Google Scholar 

  7. Polini, A., et al.: Osteoinduction of human mesenchymal stem cells by bioactive composite scaffolds without supplemental osteogenic growth factors. PLoS ONE 6(10), e26211 (2011)

    Article  Google Scholar 

  8. Polini, A., Bai, H., Tomsia, A.P.: Dental applications of nanostructured bioactive glass and its composites. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 5(4), 399–410 (2013)

    Article  Google Scholar 

  9. Hench, L.L., et al.: Bonding mechanisms at the interface of ceramic prosthetic materials. J. Biomed. Mater. Res. 5(6), 117–141 (1971)

    Article  Google Scholar 

  10. Cao, W., Hench, L.L.: Bioactive materials. Ceram. Int. 22(6), 493–507 (1996)

    Article  Google Scholar 

  11. Hench, L.L.: Bioceramics: from concept to clinic. J. Am. Ceram. Soc. 74(7), 1487–1510 (1991)

    Article  Google Scholar 

  12. Baron, R.: Cell-mediated extracellular acidification and bone resorption: evidence for a low pH in resorbing lacunae and localization of a 100-kD lysosomal membrane protein at the osteoclast ruffled border. J. Cell Biol. 101(6), 2210–2222 (1985)

    Article  Google Scholar 

  13. Bagambisa, F.B., Joos, U., Schilli, W.: Mechanisms and structure of the bond between bone and hydroxyapatite ceramics. J. Biomed. Mater. Res. 27(8), 1047–1055 (1993)

    Article  Google Scholar 

  14. de Bruijn, J.D., van Blitterswijk, C.A., Davies, J.E.: Initial bone matrix formation at the hydroxyapatite interface in vivo. J. Biomed. Mater. Res. 29(1), 89–99 (1995)

    Article  Google Scholar 

  15. Hench, L.L., Paschall, H.A.: Direct chemical bond of bioactive glass-ceramic materials to bone and muscle. J. Biomed. Mater. Res. 7(3), 25–42 (1973)

    Article  Google Scholar 

  16. Hench, L.L., Polak, J.M.: Third-generation biomedical materials. Science 295(5557), 1014–1017 (2002)

    Article  Google Scholar 

  17. Jones, J.R.: Review of bioactive glass: from Hench to hybrids. Acta Biomater. 9(1), 4457–4486 (2013)

    Article  Google Scholar 

  18. Vallet-Regí, M., Ragel, C.V., Antonio, J.: Salinas, glasses with medical applications. Eur. J. Inorg. Chem. 2003(6), 1029–1042 (2003)

    Article  Google Scholar 

  19. Bosetti, M., Cannas, M.: The effect of bioactive glasses on bone marrow stromal cells differentiation. Biomaterials 26(18), 3873–3879 (2005)

    Article  Google Scholar 

  20. Xynos, I.D., et al.: Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass® 45S5 dissolution. J. Biomed. Mater. Res. 55(2), 151–157 (2001)

    Article  Google Scholar 

  21. Gorustovich, A.A., Roether, J.A., Boccaccini, A.R.: Effect of bioactive glasses on angiogenesis: a review of in vitro and in vivo evidences. Tissue Eng. Part B Rev. 16(2), 199–207 (2010)

    Article  Google Scholar 

  22. Zhang, D., et al.: Antibacterial effects and dissolution behavior of six bioactive glasses. J. Biomed. Mater. Res. A 93(2), 475–483 (2010)

    Google Scholar 

  23. Day, R.M., Boccaccini, A.R.: Effect of particulate bioactive glasses on human macrophages and monocytes in vitro. J. Biomed. Mater. Res. A 73(1), 73–79 (2005)

    Article  Google Scholar 

  24. Beattie, J.H., Avenell, A.: Trace element nutrition and bone metabolism. Nutr. Res. Rev. 5(1), 167–188 (1992)

    Article  Google Scholar 

  25. Hoppe, A., Guldal, N.S., Boccaccini, A.R.: A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32(11), 2757–2774 (2011)

    Article  Google Scholar 

  26. Wang, M.: Developing bioactive composite materials for tissue replacement. Biomaterials 24(13), 2133–2151 (2003)

    Article  Google Scholar 

  27. Bonfield, W., et al.: Hydroxyapatite reinforced polyethylene—a mechanically compatible implant material for bone replacement. Biomaterials 2(3), 185–186 (1981)

    Article  Google Scholar 

  28. Sola, A., et al.: Bioactive glass coatings: a review. Surf. Eng. 27(8), 560–572 (2011)

    Article  Google Scholar 

  29. Ramalho-Santos, M., Willenbring, H.: On the origin of the term “stem cell”. Cell Stem Cell 1(1), 35–38 (2007)

    Article  Google Scholar 

  30. Thomson, J.A., et al.: Embryonic stem cell lines derived from human blastocysts. Science 282(5391), 1145–1147 (1998)

    Article  Google Scholar 

  31. Takahashi, K., Yamanaka, S.: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4), 663–676 (2006)

    Article  Google Scholar 

  32. Gatti, R., et al.: Immunological reconstitution of sex-linked lymphopenic immunological deficiency. Lancet 292(7583), 1366–1369 (1968)

    Article  Google Scholar 

  33. Gratwohl, A., et al.: Hematopoietic stem cell transplantation: a global perspective. JAMA 303(16), 1617–1624 (2010)

    Article  Google Scholar 

  34. Engler, A.J., et al.: Matrix elasticity directs stem cell lineage specification. Cell 126(4), 677–689 (2006)

    Article  Google Scholar 

  35. Wang, H., et al.: Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering. Biomaterials 28(22), 3338–3348 (2007)

    Article  Google Scholar 

  36. Polini, A., et al.: Stable biofunctionalization of hydroxyapatite (HA) surfaces by HA-binding/osteogenic modular peptides for inducing osteogenic differentiation of mesenchymal stem cells. Biomater. Sci. 2, 1779–1786 (2014)

    Article  Google Scholar 

  37. Zhao, F., et al.: Effects of hydroxyapatite in 3-D chitosan-gelatin polymer network on human mesenchymal stem cell construct development. Biomaterials 27(9), 1859–1867 (2006)

    Article  Google Scholar 

  38. Liu, H., et al.: Composite scaffolds of nano-hydroxyapatite and silk fibroin enhance mesenchymal stem cell-based bone regeneration via the interleukin 1 alpha autocrine/paracrine signaling loop. Biomaterials 49, 103–112 (2015)

    Article  Google Scholar 

  39. Zandi, M., et al.: Biocompatibility evaluation of nano-rod hydroxyapatite/gelatin coated with nano-HAp as a novel scaffold using mesenchymal stem cells. J. Biomed. Mater. Res. A 92(4), 1244–1255 (2010)

    Google Scholar 

  40. Zhou, D.S., et al.: Repair of segmental defects with nano-hydroxyapatite/collagen/PLA composite combined with mesenchymal stem cells. J. Bioact. Compat. Polym. 21(5), 373–384 (2006)

    Article  Google Scholar 

  41. Huang, Y., et al.: Micro-/nano- sized hydroxyapatite directs differentiation of rat bone marrow derived mesenchymal stem cells towards an osteoblast lineage. Nanoscale 4(7), 2484–2490 (2012)

    Article  Google Scholar 

  42. Curtin, C.M., et al.: Combinatorial gene therapy accelerates bone regeneration: non-viral dual delivery of VEGF and BMP2 in a collagen-nanohydroxyapatite scaffold. Adv. Healthcare Mater. 4(2), 223–227 (2015)

    Article  Google Scholar 

  43. Gan, Y., et al.: The clinical use of enriched bone marrow stem cells combined with porous beta-tricalcium phosphate in posterior spinal fusion. Biomaterials 29(29), 3973–3982 (2008)

    Article  Google Scholar 

  44. Arinzeh, T.L., et al.: A comparative study of biphasic calcium phosphate ceramics for human mesenchymal stem-cell-induced bone formation. Biomaterials 26(17), 3631–3638 (2005)

    Article  Google Scholar 

  45. Sun, H., et al.: The upregulation of osteoblast marker genes in mesenchymal stem cells prove the osteoinductivity of hydroxyapatite/tricalcium phosphate biomaterial. Transpl. Proc. 40(8), 2645–2648 (2008)

    Article  Google Scholar 

  46. Tang, M., et al.: Human embryonic stem cell encapsulation in alginate microbeads in macroporous calcium phosphate cement for bone tissue engineering. Acta Biomater. 8(9), 3436–3445 (2012)

    Article  Google Scholar 

  47. Han, P., Wu, C., Xiao, Y.: The effect of silicate ions on proliferation, osteogenic differentiation and cell signalling pathways (WNT and SHH) of bone marrow stromal cells. Biomater. Sci. 1(4), 379–392 (2013)

    Article  Google Scholar 

  48. Mihaila, S.M., et al.: The osteogenic differentiation of SSEA-4 sub-population of human adipose derived stem cells using silicate nanoplatelets. Biomaterials 35(33), 9087–9099 (2014)

    Article  Google Scholar 

  49. Mieszawska, A.J., et al.: Osteoinductive silk-silica composite biomaterials for bone regeneration. Biomaterials 31(34), 8902–8910 (2010)

    Article  Google Scholar 

  50. Ren, M., et al.: Ascorbic acid delivered by mesoporous silica nanoparticles induces the differentiation of human embryonic stem cells into cardiomyocytes. Mater. Sci. Eng. C 56, 348–355 (2015)

    Article  Google Scholar 

  51. Ambre, A.H., Katti, D.R., Katti, K.S.: Nanoclays mediate stem cell differentiation and mineralized ECM formation on biopolymer scaffolds. J. Biomed. Mater. Res. A 101(9), 2644–2660 (2013)

    Article  Google Scholar 

  52. Gaharwar, A.K., et al.: Nanoclay-enriched poly(ɛ-caprolactone) electrospun scaffolds for osteogenic differentiation of human mesenchymal stem cells. Tissue Eng. Part A 20(15–16), 2088–2101 (2014)

    Article  Google Scholar 

  53. Ohgushi, H., et al.: Osteogenic differentiation of cultured marrow stromal stem cells on the surface of bioactive glass ceramics. J. Biomed. Mater. Res. 32(3), 341–348 (1996)

    Article  Google Scholar 

  54. Day, R.M.: Bioactive glass stimulates the secretion of angiogenic growth factors and angiogenesis in vitro. Tissue Eng. 11(5–6), 768–777 (2005)

    Article  Google Scholar 

  55. Tsigkou, O., et al.: Differentiation of fetal osteoblasts and formation of mineralized bone nodules by 45S5 Bioglass conditioned medium in the absence of osteogenic supplements. Biomaterials 30(21), 3542–3550 (2009)

    Article  Google Scholar 

  56. Haro Durand, L.A., et al.: Angiogenic effects of ionic dissolution products released from a boron-doped 45S5 bioactive glass. J. Mater. Chem. B 3(6), 1142–1148 (2015)

    Article  Google Scholar 

  57. Rath, S.N., et al.: Bioactive copper-doped glass scaffolds can stimulate endothelial cells in co-culture in combination with mesenchymal stem cells. PLoS ONE 9(12), e113319 (2014)

    Article  Google Scholar 

  58. Wu, X., et al.: Zn and Sr incorporated 64S bioglasses: material characterization, in-vitro bioactivity and mesenchymal stem cell responses. Mater. Sci. Eng. C 52, 242–250 (2015)

    Article  Google Scholar 

  59. Ojansivu, M., et al.: Bioactive glass ions as strong enhancers of osteogenic differentiation in human adipose stem cells. Acta Biomater. 21, 190–203 (2015)

    Article  Google Scholar 

  60. Miola, M., et al.: In vitro study of manganese-doped bioactive glasses for bone regeneration. Mater. Sci. Eng. C 38, 107–118 (2014)

    Article  Google Scholar 

  61. Wu, C., et al.: Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials 34(2), 422–433 (2013)

    Article  Google Scholar 

  62. Larrañaga, A., et al.: Effect of bioactive glass particles on osteogenic differentiation of adipose-derived mesenchymal stem cells seeded on lactide and caprolactone based scaffolds. J. Biomed. Mater. Res. A 103, 3815–3824 (2015)

    Article  Google Scholar 

  63. Handel, M., et al.: 45S5-Bioglass((R))-based 3D-scaffolds seeded with human adipose tissue-derived stem cells induce in vivo vascularization in the CAM angiogenesis assay. Tissue Eng. Part A 19(23–24), 2703–2712 (2013)

    Article  Google Scholar 

  64. Nayak, T.R., et al.: Thin films of functionalized multiwalled carbon nanotubes as suitable scaffold materials for stem cells proliferation and bone formation. ACS Nano 4(12), 7717–7725 (2010)

    Article  Google Scholar 

  65. Chao, T.-I., et al.: Carbon nanotubes promote neuron differentiation from human embryonic stem cells. Biochem. Biophys. Res. Commun. 384(4), 426–430 (2009)

    Article  Google Scholar 

  66. Suliman, S., et al.: Release and bioactivity of bone morphogenetic protein-2 are affected by scaffold binding techniques in vitro and in vivo. J. Controlled Release 197, 148–157 (2015)

    Article  Google Scholar 

  67. Wu, T.-J., et al.: Tracking the engraftment and regenerative capabilities of transplanted lung stem cells using fluorescent nanodiamonds. Nat. Nano 8(9), 682–689 (2013)

    Article  Google Scholar 

  68. Nayak, T.R., et al.: Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano 5(6), 4670–4678 (2011)

    Article  Google Scholar 

  69. Akhavan, O., Ghaderi, E.: Differentiation of human neural stem cells into neural networks on graphene nanogrids. J. Mater. Chem. B 1(45), 6291–6301 (2013)

    Article  Google Scholar 

  70. Chen, G.Y., et al.: A graphene-based platform for induced pluripotent stem cells culture and differentiation. Biomaterials 33(2), 418–427 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

Arghya Paul would like to acknowledge the Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of National Institutes of Health (NIH), under Award Number P20GM103638-04 and University of Kansas New Faculty General Research Fund. Alessandro Polini would like to acknowledge the Radboud Excellence Initiative from Radboud University for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Polini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Whitlow, J., Paul, A., Polini, A. (2016). Bioactive Materials: Definitions and Application in Tissue Engineering and Regeneration Therapy. In: Marchi, J. (eds) Biocompatible Glasses. Advanced Structured Materials, vol 53. Springer, Cham. https://doi.org/10.1007/978-3-319-44249-5_1

Download citation

Publish with us

Policies and ethics