Skip to main content
Log in

Deformation and phase transformations during the cyclic oxidation of Ni−Al and Ni−Pt−Al

  • Research Summary
  • High-Temperature Applications
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The reversible high-temperature γ′ to β phase transformation may be critical to explaining the unusual high-temperature oxidation behavior of (Ni,Pt)Al alloys and coatings. During high-temperature, high-frequency (1 h) cyclic oxidation in dry, flowing O2, unprecedented macroscopic deformation was observed in two-phase (γ′+β) cast specimens of Hf-doped Ni−Al at 1,150°C and Hf-doped Ni−Pt−Al at 1,100° and 1,150°C, Outside of this two-phase field or when the cycle frequency was decreased to 100h, no deformation was observed. Using high-temperaturex-ray diffraction in an inert environment, the β-to-γ′ phase ratio was observed to increase above 1,000°C, causing a 2.5% volume change. The addition of platinum appeared to lower the transformation temperature consistent with the deformation observed in castalloys and rumpling of simple and platinum-modified aluminide coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Doychak, Intermetallic Compounds. Vol. 1: Principles. ed. J.H. Westbrook and R. Fleischer (New York: John Wiley & Sons, 1994), pp. 977–1016.

    Google Scholar 

  2. H.J. Grabke. Intermetallics, 7 (1999), pp. 1153–1158.

    Article  CAS  Google Scholar 

  3. M.P. Brady et al., in Materials Science and Technology: A Comprehensive Treatment, Vol. 19B, Corrosion and Environmental Degradation of Materials (Weinheim, Germany: Wiley-VCH, 1999), pp. 229–325.

    Google Scholar 

  4. N.R. Lindblad, Oxid. Met., 1 (1969), pp. 143–170.

    Article  CAS  Google Scholar 

  5. G. Lehnert and H. Meinhardt, Electrodeposition and Surface Treatment, 1 (1972-1973), pp. 189–197.

    Article  Google Scholar 

  6. R. Streiff, O. Cerclier, and D. H. Boone, Surf. Coat. Technol., 32 (1987), pp. 111–126.

    Article  CAS  Google Scholar 

  7. B.M. Warnes and D.C. Punola, Surf. Coat. Technol., 94–95 (1997), pp. 1–6.

    Article  Google Scholar 

  8. E.J. Felten, Oxid. Met., 10 (1976) pp. 23–28.

    Article  CAS  Google Scholar 

  9. J.G. Fountain et al., Oxid. Met., 10 (1976), pp. 341–345.

    Article  CAS  Google Scholar 

  10. B.A. Pint, Surf. Coat. Technol., 188–189 (2004), pp. 71–78.

    Article  CAS  Google Scholar 

  11. R.A. Miller, J. Eng. Gas Turb. & Power, 111 (1989), pp. 301–305.

    Article  CAS  Google Scholar 

  12. J.T. DeMasi-Marcin, K.D. Sheffler, and S. Bose, J. Eng. Gas Turb. & Power, 112 (1990), pp. 522–527.

    Google Scholar 

  13. S.M. Meier et al., J. Eng. Gas Turb. & Power, 114 (1992) pp. 258–263.

    CAS  Google Scholar 

  14. B.A. Pint et al., Mater. Sci. Eng., A245 (1998), pp. 201–211.

    Article  Google Scholar 

  15. B.A. Pint et al., Mater. High Temp., 17 (2000), pp. 165–171.

    CAS  Google Scholar 

  16. H. Svensson et al., Mater. High Temp., 20 (2003), pp. 421–427.

    Article  CAS  Google Scholar 

  17. B.A. Pint, K.L. More, and I.G. Wright, Oxid. Met., 59 (2003), pp. 257–283.

    Article  CAS  Google Scholar 

  18. B.A. Pint et al., Superalloys 2004, ed. K.A. Green et al.. (Warrendale, PA; TMS, 2004), pp. 597–606.

    Google Scholar 

  19. T.B. Massalski et al., editors, Binary Alloy Phase Diagrams, 1st edition (Metals Park, OH: ASM International, 1986).

    Google Scholar 

  20. M.W. Chen et al., Acta Mater., 51 (2003), pp. 4279–4294.

    Article  CAS  Google Scholar 

  21. M. Reid, M.J. Pomeroy, and J.S. Robinson, Mater. High Temp., 20 (2003), pp. 467–473.

    CAS  Google Scholar 

  22. H.J. Kim and M.E. Walter, Mater. Sci. Eng., A360 (2003), pp. 7–17.

    Article  CAS  Google Scholar 

  23. J. Angenete, K. Stiller, and E. Bakchinova, Surf. Coat. Tech., 176 (2004), pp. 272–283.

    Article  CAS  Google Scholar 

  24. J. Doychak, J.L. Smialek, and C.A. Barrett, Oxidation of High-Temperature Intermetallics ed. T. Grobstein and J. Doychak (Warrendale, PA: TMS, 1988), pp. 41–55.

    Google Scholar 

  25. B.A. Pint, P.F. Tortorelli, and I.G. Wright, Oxid. Met., 58 (2002), pp. 73–101.

    Article  CAS  Google Scholar 

  26. B.A. Pint, Oxid. Met., 45 (1996), pp. 1–37.

    Article  CAS  Google Scholar 

  27. J.A. Haynes et al., Mater. High Temp., 21 (2004), pp. 87–94.

    CAS  Google Scholar 

  28. R. Streiff and J.M. N'Gandu Muamba, J. Metals, 40 (11) (1988), p. 104.

    Google Scholar 

  29. J.G. Smeggil and N.S. Bornstein, High Temperature Corrosion in Energy Systems, eds. M.F. Rothman (Warrendale, PA; TMS, 1985), pp. 681–695.

    Google Scholar 

  30. J.A. Haynes et al., Oxid. Met., 58 (2002), pp. 513–544.

    Article  CAS  Google Scholar 

  31. B. Gleeson et al., Mater. Sci. Forum 461-4 (2004), pp. 213–222.

    Google Scholar 

  32. B.A. Pint et al., for submission to Scripta Mater. (2005).

  33. C.E. Lowell et al., Oxid. Met., 36 (1991), pp. 81–112.

    Article  CAS  Google Scholar 

  34. J.A. Nesbitt et al., Mater. Sci. Eng., A153 (1992), pp. 561–566.

    Article  Google Scholar 

  35. J.L. Smialek, Acta Mater., 51 (2003), pp. 469–483.

    Article  CAS  Google Scholar 

  36. V.K. Tolpygo and D.R. Clarke, Acta Mater., 52 (2004), pp. 5129–5141.

    CAS  Google Scholar 

  37. Y.K. Au and C.M. Wayman, Scripta Met., 6 (1972), pp. 1209–1214.

    Article  CAS  Google Scholar 

  38. S.H. Song et al., Intermetallics, 13 (2005), pp. 203–210.

    Article  CAS  Google Scholar 

  39. T. Chráska, J. Lasek, and P. Chráska, Mater. Sci. Eng., A244 (1998), pp. 263–272.

    Article  Google Scholar 

  40. S.A. Speakman, C.J. Rawn, and B.A. Pint (unpublished work, 2005).

  41. Y. Zhang et al., Surf. Coat. Technol., 163–164 (2003), pp. 19–24.

    Article  Google Scholar 

  42. A.G. Evans et al., Progress in Materials Science, 46 (2001), pp. 505–553.

    Article  Google Scholar 

  43. I.T. Spitsberg, D.R. Mumm, and A.G. Evans, Mater. Sci. Eng., A394 (2005) pp. 176–191.

    Article  CAS  Google Scholar 

  44. P. Deb, D.H. Boone, and T.F. Manley, J. Vac. Sci. Technol. A, 5 (1987), pp. 3366–3372.

    Article  CAS  Google Scholar 

  45. V.K. Tolpygo, and D.R. Clarke, Acta Mater., 48 (2000), pp. 3283–3293.

    Article  CAS  Google Scholar 

  46. V.K. Tolpygo and D.R. Clarke, Acta Mater., 52 (2004), pp. 615–621.

    Article  CAS  Google Scholar 

  47. V.K. Tolpygo and D.R. Clarke, Acta Mater., 52 (2004), pp. 5115–5127.

    CAS  Google Scholar 

  48. R. Panat and K.J. Hsia, Proc. R. Soc. Lond. A, 460 (2004), pp. 1957–1979.

    Article  CAS  Google Scholar 

  49. G.W. Goward, Mater. Sci. Technol., 2 (1986), pp. 194–200.

    CAS  Google Scholar 

  50. J.L. Smialek, Met. Trans., 2A (1971), pp. 913–915.

    Article  Google Scholar 

  51. J.L. Smialek and C.E. Lowell, J. Electrochem. Soc., 121 (1974) pp. 800–805.

    CAS  Google Scholar 

  52. J.D. Whittenberger et al., Mater. Lett., 11 (1991), pp. 267–272.

    Article  CAS  Google Scholar 

  53. R. Darolia and W.S. Walston Structural Intermetallics 1997, eds. M.V. Nathal, et al. (Warrendale, PA: TMS, 1997), pp. 585–594.

    Google Scholar 

  54. Z.P. Xing, Y.F. Han, and M.G. Yan, Intermetallics, 8 (2000), pp. 673–677.

    Article  CAS  Google Scholar 

  55. B.A. Pint and J.H. Schneibel, Scripta Materialia, 52 (2005), pp. 1199–1204.

    Article  CAS  Google Scholar 

  56. S. Dryepondt and B.A. Pint, ORNL (unpublished work, 2005).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pint, B.A., Speakman, S.A., Rawn, C.J. et al. Deformation and phase transformations during the cyclic oxidation of Ni−Al and Ni−Pt−Al. JOM 58, 47–52 (2006). https://doi.org/10.1007/s11837-006-0068-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-006-0068-y

Keywords

Navigation