Skip to main content
Log in

Oxidation Behavior of γ′-Ni3Al-Based Ni–20Al–5Cr Alloys With and Without Reactive Elements Under Different Heating Conditions

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

High-temperature oxidation of a model γ′-Ni3Al-based Ni–20Al–5Cr alloy and versions of this alloy doped with Y, Hf, or Si, or some combination of these, was investigated. Oxide scale evolution was characterized using SEM, TEM, and TOF–SIMS. The resulting scale microstructures depended quite sensitively on the heating rate to the oxidation temperature of 1100 °C. However, whatever the heating rate, the dopant additions improved the oxidation resistance of the base alloy. The reactive elements Y and Hf, if segregated to the surface during preheating under conditions where appreciable oxidation was not possible, suppressed transient oxidation and facilitated the exclusive growth of the thermodynamically stable α-Al2O3 scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. C. Reed, The Superalloys: Fundamentals and Applications, (Cambridge University Press, Cambridge, 2006).

    Book  Google Scholar 

  2. B. A. Pint, J. R. DiStefano and I. G. Wright, Materials Science and Engineering 415, 2006 (255).

    Article  Google Scholar 

  3. T. M. Pollock and S. Tin, Journal of Propulsion and Power 22, 2006 (361).

    Article  CAS  Google Scholar 

  4. J. L. Smialek and G. H. Meier, in Superalloys II, eds. C. T. Sims, N. S. Stoloff and W. C. Hagel (Wiley, New York, 1987), p. 293.

    Google Scholar 

  5. B. Gleeson, in Corrosion and Environmental Degradation of Materials, ed. M. Schütze, Vol. 19 of the Series: Materials Science and Technology (Wiley-VCH, Germany, 2000), p. 173.

  6. H. Echsler, D. Renusch and M. Schütze, Materials Science and Technology 20, 2004 (307).

    Article  CAS  Google Scholar 

  7. P. Y. Hou, Journal of the American Ceramic Society 86, 2003 (660).

    Article  CAS  Google Scholar 

  8. D. Naumenko, B. A. Pint and W. J. Quadakkers, Oxidation of Metals 86, 2016 (1).

    Article  CAS  Google Scholar 

  9. B. Gleeson, N. Mu and S. Hayashi, Journal of Materials Science 44, 2007 (1704).

    Article  Google Scholar 

  10. Y. Wu, F. Gesmundo and Y. Niu, Oxidation of Metals 65, 2006 (53).

    Article  CAS  Google Scholar 

  11. M. W. Brumm and H. J. Grabke, Corrosion Science 33, 1992 (1677).

    Article  CAS  Google Scholar 

  12. T. Gheno, B. C. Zhou, A. Ross, X. Liu, G. Lindwall, Z.-K. Liu and B. Gleeson, Oxidation of Metals 87, 2017 (297).

    Article  CAS  Google Scholar 

  13. J. Klöwer and J.-G. Li, Materials and Corrosion 47, 1996 (545).

    Article  Google Scholar 

  14. R. Miner, Metallurgical Transactions A 8, 1977 (1949).

    Article  Google Scholar 

  15. P. Caron, S. Naveos and T. Khan, in Materials for Advanced Power Engineering 1994—Part I, eds. D. Coutsouradis, et al. (Kluwer Academic Publisher, Dordrecht, 1994), p. 1185.

    Google Scholar 

  16. B. A. Pint, Oxidation of Metals 49, 1998 (531).

    Article  CAS  Google Scholar 

  17. B. A. Pint, Journal of the American Ceramic Society 86, 2003 (686).

    Article  CAS  Google Scholar 

  18. G. J. Tatlock, D. Ram and P. Wang, Materials at High Temperatures 26, 2009 (293).

    Article  CAS  Google Scholar 

  19. B. A. Pint, K. L. More and I. G. Wright, Oxidation of Metals 59, 2003 (257).

    Article  CAS  Google Scholar 

  20. N. Shibata, S. D. Findlay, S. Azuma, T. Mizoguchi, T. Yamamoto and Y. Ikuhara, Nature Materials 8, 2009 (654).

    Article  CAS  Google Scholar 

  21. Z. Yu, Q. Wu, J. M. Rickman, H. M. Chan and M. P. Harmer, Scripta Materialia 68, 2013 (703).

    Article  CAS  Google Scholar 

  22. Q. Wu, H. M. Chan, J. M. Rickman and M. P. Harmer, Journal of the American Ceramic Society 98, 2015 (3346).

    Article  CAS  Google Scholar 

  23. P. Fielitz, K. Kelm, R. Bertram, A. H. Chokshi and G. Borchardt, Acta Materialia 127, 2017 (302).

    Article  CAS  Google Scholar 

  24. H. Yoshida, Y. Ikuhara and T. Sakuma, Journal of Materials Research 13, 1998 (2597).

    Article  CAS  Google Scholar 

  25. J. Cho, C. M. Wang, H. M. Chan, J. M. Rickman and M. P. Harmer, Acta Materialia 47, 1999 (4197).

    Article  CAS  Google Scholar 

  26. A. H. Heuer, M. Zahiri-Azar, H. Guhl, M. Foulkes, B. Gleeson, T. Nakagawa, Y. Ilkuhara and M. W. Finnis, Journal of the American Ceramic Society 99, 2016 (733).

    Article  CAS  Google Scholar 

  27. A. H. Heuer, D. B. Hovis, J. L. Smialek and B. Gleeson, Journal of the American Ceramic Society 94, 2011 (146).

    Article  Google Scholar 

  28. A. H. Heuer, T. Nakagawa, M. Z. Azar, D. B. Hovis, J. L. Smialek, B. Gleeson, N. D. M. Hine, H. Guhl, H.-S. Lee, P. Tangney, W. M. C. Foulkes and M. W. Finnis, Acta Materialia 61, 2013 (6670).

    Article  CAS  Google Scholar 

  29. J. S. Sheasby and D. B. Jory, Oxidation of Metals 12, 1978 (527).

    Article  CAS  Google Scholar 

  30. P. Y. Hou, T. Izumi and B. Gleeson, Oxidation of Metals 72, 2009 (109).

    Article  CAS  Google Scholar 

  31. K. Abbasi, M. Zahiri-Azar and A. H. Heuer, Materials Performance and Characterization 6, 2017 (292).

    Article  CAS  Google Scholar 

  32. F. A. Elrefaie and W. W. Smeltzer, Journal of the Electrochemical Society 128, 1981 (2237).

    Article  CAS  Google Scholar 

  33. T. Izumi, N. Mu, L. Zhang and B. Gleeson, Surface and Coatings Technology 202, 2007 (628).

    Article  CAS  Google Scholar 

  34. H. Hindam and D. P. Whittle, Journal of the Electrochemical Society 129, 1982 (1147).

    Article  CAS  Google Scholar 

  35. J. Nowok, Oxidation of Metals 18, 1982 (1).

    Article  CAS  Google Scholar 

  36. P.T. Moseley, K.R. Hyde, B.A. Bellamy and G. Tappin, Corrosion Science 24, 1984 (547).

    Article  CAS  Google Scholar 

  37. W. Zhao, Z. Li and B. Gleeson, Oxidation of Metals 79, 2013 (361).

    Article  CAS  Google Scholar 

  38. S. Lamouri, M. Hamidouche, N. Bouaouadja, et al., Boletín de la sociedad española de cerámica y vidrio 56, 2017 (47).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by ONR, Dr. D. Shifler, Program Manager, under Grant No. NOOO14-16-1-2405.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Heuer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, WT., Gleeson, B. & Heuer, A. Oxidation Behavior of γ′-Ni3Al-Based Ni–20Al–5Cr Alloys With and Without Reactive Elements Under Different Heating Conditions. Oxid Met 92, 137–150 (2019). https://doi.org/10.1007/s11085-019-09918-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-019-09918-w

Keywords

Navigation