Skip to main content
Log in

Plant–flower visitor networks in a serpentine metacommunity: assessing traits associated with keystone plant species

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Consistent topology of plant–pollinator networks across space may be due to substitutability of the plant species most important for community function (keystone species). It is unclear, however, whether keystone species identity varies within a community type and what traits underlie this variation. Using a network biology approach, we assess whether keystone plant species vary across a metacommunity of five serpentine seeps in California and determine the features that predict their identity. We define keystone species as those with high strength, low node specialization index (NSI), and/or low d′ and determine whether these parameters are predicted by floral traits (flower biomass, number of open flowers per plant, symmetry, or stamen number) and/or ecological features (variation in local floral abundance, endemism) within seeps and across the metacommunity. Keystone species identity varied among seeps and was associated with local flower abundance: mean floral abundance correlated positively with strength but negatively with NSI within most seeps as well as across the metacommunity. For the metacommunity, flower biomass correlated negatively with NSI while variation in flower abundance correlated negatively with strength. Across the metacommunity, the d′ metric was associated with flower biomass, whereby plants with smaller flowers interacted with the most abundant pollinators across the metacommunity. Results suggest that connectance and interaction evenness may not be greatly influenced by community composition turnover due to substitution of keystone plant species across space. Keystone species can be predicted by functional traits but which trait (flower abundance or size) depended on the metric used and the level observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alatalo R (1981) Problems in the measurement of evenness in ecology. Oikos 37:199–204

    Article  Google Scholar 

  • Albrecht M, Schmid B, Hautier Y, Müller CB (2012) Diverse pollinator communities enhance plant reproductive success. Proc R Soc B 279:4845–4852

    Article  PubMed Central  PubMed  Google Scholar 

  • Alexander EB (2007) Serpentine geoecology of western North America: geology, soils, and vegetation. Oxford University Press, New York

    Google Scholar 

  • Almeida-Neto M, Guimarães P, Guimarães PR, Loyola RD, Ulrich W (2008) A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117:1227–1239

    Article  Google Scholar 

  • Alonso C, Navarro-Fernández CM, Arceo-Gómez G, Meindl GA, Parra-Tabla V, Ashman T-L (2013) Among-species differences in pollen quality and quantity limitation: implications for endemics in biodiverse hotspots. Ann Bot 112:1461–1469

    Article  PubMed Central  PubMed  Google Scholar 

  • Bascompte J, Jordano P (2007) Plant–animal mutualistic networks: the architecture of biodiversity. Ann Rev Ecol Evol Syst 38:567–593

    Article  Google Scholar 

  • Bascompte J, Jordano P, Melian CJ, Olesen JM (2003) The nested assembly of plant–animal mutualistic networks. Proc Natl Acad Sci USA 100:9383–9387

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bascompte J, Jordano P, Olesen JM (2006) Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312:431–433

    Article  CAS  PubMed  Google Scholar 

  • Blüthgen N, Menzel F, Blüthgen N (2006) Measuring specialization in species interaction networks. BMC Ecol 6:9

    Article  PubMed Central  PubMed  Google Scholar 

  • Blüthgen N, Fründ J, Vázquez DP, Menzel F (2008) What do interaction network metrics tell us about specialization and biological traits? Ecol 89:3387–3399

    Article  Google Scholar 

  • Burgos E, Ceva H, Perazzo RPJ, Devoto M, Medan D, Zimmermann M, Delbue AM (2007) Why nestedness in mutualistic networks? J Theor Biol 249:307–313

    Article  PubMed  Google Scholar 

  • Burkle LA, Alarcon R (2011) The future of plant–pollinator diversity: understanding interaction networks across time, space, and global change. Am J Bot 98:528–538

    Article  PubMed  Google Scholar 

  • Burkle L, Irwin R (2009) The importance of interannual variation and bottom-up nitrogen enrichment for plant–pollinator networks. Oikos 118:1816–1829

    Article  Google Scholar 

  • Burkle LA, Knight TM (2012) Shifts in pollinator composition and behavior cause slow interaction accumulation with area in plant–pollinator networks. Ecology 93:2329–2335

    Article  PubMed  Google Scholar 

  • Chacoff NP, Vázquez DP, Lomáscolo SB, Stevani EL, Dorado J, Padrón B (2012) Evaluating sampling completeness in a desert plant–pollinator network. J Anim Ecol 81:190–200

    Article  PubMed  Google Scholar 

  • Christianou M, Ebenman B (2005) Keystone species and vulnerable species in ecological networks: strong or weak indicators? J Theor Biol 235:95–103

    Article  PubMed  Google Scholar 

  • Colwell RK (2005) EstimateS: Statistical estimation of species richness and shared species from samples. Version 9. User’s Guide and application published at: http://purl.oclc.org/estimates

  • Cottee-Jones HEW, Whittaker RJ (2012) The keystone species concept: a critical appraisal. Front Biogeogr 4.3, fb_12533

  • Davic RD (2003) Linking keystone species and functional groups: a new operational definition of the keystone species concept. Conserv Ecol 7:r11

    Google Scholar 

  • de Visser S, Thébault E, de Ruiter PC (2013) Ecosystem engineers, keystone species. In: Leemans R (ed) Ecological systems. Springer, New York, pp 59–68

    Chapter  Google Scholar 

  • Devoto M, Medan D, Montaldo NH (2005) Patterns of interaction between plants and pollinators along an environmental gradient. Oikos 109:461–472

    Article  Google Scholar 

  • Dicks LV, Corbet SA, Pywell RF (2002) Compartmentalization in plant–insect flower visitor webs. J Anim Ecol 71:32–43

    Article  Google Scholar 

  • Dormann CF (2011) How to be a specialist? Quantifying specialisation in pollination networks. Netw Biol 1:1–20

    Google Scholar 

  • Dormann CF, Gruber B, Frund J (2008) Introducing the bipartite package: analysing ecological networks. R News 8(2):8–11

    Google Scholar 

  • Dunne JA, Williams RJ, Martinez ND (2002) Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol Lett 5:558–567

    Article  Google Scholar 

  • Dupont Y-L, Oleson JM (2009) Ecological modules and roles of species in heathland plant-insect flower visitor networks. J Anim Ecol 78:346–353

  • Dupont YL, Padrón B, Olesen JM, Petanidou T (2009) Spatio-temporal variation in the structure of pollination networks. Oikos 118:1261–1269

    Article  Google Scholar 

  • Fang Q, Huang S-Q (2012) Relative stability of core groups in pollination networks in a biodiversity hotspot over four years. PLoS ONE 7:e32663

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD (2004) Pollination syndromes and floral specialization. Annu Rev Ecol Evol Syst 35:375–403

    Article  Google Scholar 

  • Fontaine C, Dajoz I, Meriguet J, Loreau M (2006) Functional diversity of plant–pollinator interaction webs enhances the persistence of plant communities. PLoS Biol 4:129–135

    Article  CAS  Google Scholar 

  • Forup ML, Henson KSE, Craze PG, Memmott J (2008) The restoration of ecological interactions: plant–pollinator networks on ancient and restored heathlands. J Appl Ecol 45:742–752

    Article  Google Scholar 

  • Freestone AL, Harrison S (2006) Regional enrichment of local assemblages is robust to variation in local productivity, abiotic gradients, and heterogeneity. Ecol Lett 9:95–102

    Article  PubMed  Google Scholar 

  • Freestone AL, Inouye BD (2006) Dispersal limitation and environmental heterogeneity shape scale-dependent diversity patterns in plant communities. Ecology 87:2425–2432

    Article  PubMed  Google Scholar 

  • Fründ J, Dormann CF, Holzschuh A, Tscharntke T (2013) Bee diversity effects on pollination depend on functional complementarity and niche shifts. Ecology 94:2042–2054

    Article  PubMed  Google Scholar 

  • Geslin B, Gauzens B, Thébault E, Dajoz I (2013) Plant pollinator networks along a gradient of urbanisation. PLoS ONE 8:e63421

    Article  PubMed Central  PubMed  Google Scholar 

  • Gómez JM, Bosch J, Perfectti F, Fernández JD, Abdelaziz M, Camacho JPM (2008) Spatial variation in selection on corolla shape is promoted by the preference patterns of its local pollinators. Proc R Soc B 275:2241–2249

    Article  PubMed Central  PubMed  Google Scholar 

  • Gotelli NJ, Colwell RK (2008) Estimating species richness. In: Magurran AE, McGill BJ (eds) Frontiers in measuring biodiversity. Oxford University Press, New York, pp 39–54

    Google Scholar 

  • Harrison S, Maron J, Huxel G (2000) Regional turnover and fluctuation in populations of five plants confined to serpentine seeps. Conserv Biol 14:769–779

    Article  Google Scholar 

  • Hegland SJ, Totland Ø (2005) Relationships between species’ floral traits and pollinator visitation in a temperate grassland. Oecologia 145:586–594

    Article  PubMed  Google Scholar 

  • Hegland SJ, Nielsen A, Lázaro A, Bjerknes AL, Totland Ø (2009) How does climate warming affect plant–pollinator interactions? Ecol Lett 12:184–195

    Article  PubMed  Google Scholar 

  • Hoehn P, Tscharntke T, Tylianakis JM, Steffan-Dewenter I (2008) Functional group diversity of bee pollinators increases crop yield. Proc R Soc B 275:2283–2291

    Article  PubMed Central  PubMed  Google Scholar 

  • Jędrzejewska-Szmek K, Zych M (2013) Flower-visitor and pollen transport networks in a large city: structure and properties. Arthropod-Plant Interact 7:503–513

    Article  Google Scholar 

  • Jordano P, Bascompte J, Olesen JM (2003) Invariant properties in coevolutionary networks of plant–animal interactions. Ecol Lett 6:69–81

    Article  Google Scholar 

  • Junker RR, Blüthgen N, Brehm T, Binkenstein J, Paulus J, Schaefer HM, Stang M (2013) Specialization on traits as basis for the niche-breadth of flower visitors and as structuring mechanism of ecological networks. Funct Ecol 27:329–341

    Article  Google Scholar 

  • Kaiser-Bunbury CN, Muff S, Memmott J, Müller CB, Caflisch A (2010) The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecol Lett 13:442–452

    Article  PubMed  Google Scholar 

  • Kaiser-Bunbury CN, Vazquez DP, Stang M, Ghazoul J (2014) Determinants of the microstructure of plant–pollinator networks. Ecology. doi:10.1890/14-0024.1

    Google Scholar 

  • Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, Shurin JB, Law R, Tilman D, Loreau M, Gonzalez A (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613

    Article  Google Scholar 

  • Lopezaraiza-Mikel ME, Hayes RB, Whalley MR, Memmott J (2007) The impact of an alien plant on a native plant–pollinator network: an experimental approach. Ecol Lett 10:539–550

    Article  PubMed  Google Scholar 

  • McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–185

    Article  PubMed  Google Scholar 

  • Memmott J (1999) The structure of a plant–pollinator food web. Ecol Lett 2:276–280

    Article  Google Scholar 

  • Memmott J, Waser NM, Price MV (2004) Tolerance of pollination networks to species extinctions. Proc R Soc B 271:2605–2611

    Article  PubMed Central  PubMed  Google Scholar 

  • Memmott J, Craze PG, Waser NM, Price MV (2007) Global warming and the disruption of plant–pollinator interactions. Ecol Lett 10:710–717

    Article  PubMed  Google Scholar 

  • Mills LS, Soule ME, Doak DF (1993) The keystone-species concept in ecology and conservation. Bioscience 43:219–2224

    Article  Google Scholar 

  • Moeller DA (2005) Pollinator community structure and sources of spatial variation in plant–pollinator interactions in Clarkia xantiana ssp. xantiana. Oecologia 142:28–37

    Article  PubMed  Google Scholar 

  • Moretti M, De Bello F, Roberts SPM, Potts SG (2009) Taxonomical vs. functional responses of bee communities to fire in two contrasting climatic regions. J Anim Ecol 78:98–108

    Article  PubMed  Google Scholar 

  • Nielsen A, Totland Ø (2014) Structural properties of mutualistic networks withstand habitat degradation while species functional roles might change. Oikos 123:323–333

    Article  Google Scholar 

  • Olesen JM, Jordano P (2002) Geographic patterns in plant–pollinator mutualistic networks. Ecology 83:2416–2424

    Google Scholar 

  • Ollerton J, Killick A, Lamborn E, Watts S, Whiston M (2007) Multiple meanings and modes: on the many ways to be a generalist flower. Taxon 56:717–728

    Article  Google Scholar 

  • Power ME, Tilman D, Estes JA, Menge BA, Bond WJ, Mills LS, Daily G, Castilla JC, Lubchenco J, Paine RT (1996) Challenges in the quest for keystones. Bioscience 46:609–620

    Article  Google Scholar 

  • Price MV, Waser NM, Irwin RE, Campbell DR, Brody AK (2005) Temporal and spatial variation in pollination of a montane herb: a seven-year study. Ecology 86:2106–2116

    Article  Google Scholar 

  • R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

  • Rosas-Guerrero V, Aguilar R, Martén-Rodríguez S, Ashworth L, Lopezaraiza-Mikel M, Bastida JM, Quesada M (2014) A quantitative review of pollination syndromes: do floral traits predict effective pollinators? Ecol Lett 17:388–400

    Article  PubMed  Google Scholar 

  • Safford HD, Viers JH, Harrison SP (2005) Serpentine endemism in the California flora: a database of serpentine affinity. Madroño 52:222–257

    Article  Google Scholar 

  • Sih A, Baltus M-S (1987) Patch size, pollinator behavior, and pollinator limitation in catnip. Ecology 68:1679–1690

    Article  Google Scholar 

  • Sole RV, Montoya JM (2001) Complexity and fragility in ecological networks. Proc R Soc B 268:2039–2045

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sorensen PB, Damgaard CF, Strandberg B, Dupont YL, Pedersen MB, Carvalheiro LG, Biesmeijer JC, Olsen JM, Hagen M, Potts SG (2012) A method for under-sampled ecological network data analysis: plant–pollination as case study. J Pollinat Ecol 6:129–139

    Google Scholar 

  • Stang M, Klinkhamer PGL, van der Meijden E (2006) Size constraints and flower abundance determine the number of interactions in a plant–flower visitor web. Oikos 112:111–121

    Article  Google Scholar 

  • Stang M, Klinkhamer PGL, van der Meijden E (2007) Asymmetric specialization and extinction risk in plant–flower visitor webs: a matter of morphology or abundance? Oecologia 151:442–453

    Article  PubMed  Google Scholar 

  • Vasas V, Jordan F (2006) Topological keystone species in ecological interaction networks: considering link quality and non-trophic effects. Ecol Model 196:365–378

    Article  Google Scholar 

  • Vázquez DP, Aizen MA (2004) Asymmetric specialization: a pervasive feature of plant–pollinator interactions. Ecology 85:1251–1257

    Article  Google Scholar 

  • Vázquez DP, Blüthgen N, Cagnolo L, Chacoff NP (2009) Uniting pattern and process in plant–animal mutualistic networks: a review. Ann Bot 103:1445–1457

    Article  PubMed Central  PubMed  Google Scholar 

  • Willmer P (2011) Pollination and floral ecology. Princeton University Press, Princeton

    Book  Google Scholar 

  • Winfree R, Williams NM, Dushoff J, Kremen C (2014) Species abundance, not diet breadth, drives the persistence of the most linked pollinator as plant–pollinator networks disassemble. Am Nat 183:600–611

    Article  PubMed  Google Scholar 

  • Zamora R (2000) Functional equivalence in plant–animal interactions: ecological and evolutionary consequences. Oikos 88:442–447

    Article  Google Scholar 

Download references

Acknowledgments

We thank P. Aigner and C. Koehler of the McLaughlin Natural Reserve for logistical support, R. Spahn for organizing data for rarefaction analyses, and A. Johnson, N. Forrester, and two anonymous reviewers for comments on the manuscript. Funding was provided by NSF OISE 0852846 and DEB 1020523 to TLA, FBBVA through the research project ENDLIMIT [BIOCON08/125], University of Pittsburgh First Year Fellowship to KAL, SEP and CONACYT (211982) to GAG, CAPES international scholarship (BEX 6151/11-6) to MW, NSF GRFP to MHK, and an Ivy McManus Diversity Fellowship (University of Pittsburgh) to GAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tia-Lynn Ashman.

Additional information

Handling Editors: Kristine Nemec and Heikki Hokkanen.

Matthew H. Koski and George A. Meindl have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 115 kb)

Supplementary material 2 (PDF 77 kb)

Supplementary material 3 (PDF 62 kb)

11829_2014_9353_MOESM4_ESM.tif

Accumulation curves of plant–flower visitor interaction diversity at the five study sites (a = TP8; b = BS; c = TPW; d = RHA; e = RHB). Estimated asymptotic interaction richness (Chao 1) and associated 95 % confidence intervals are represented by horizontal lines. Rarefaction curves were constructed using the cumulative number of plots observed per day at each site as the unit of sampling effort. Supplementary material 4 (TIFF 300277 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koski, M.H., Meindl, G.A., Arceo-Gómez, G. et al. Plant–flower visitor networks in a serpentine metacommunity: assessing traits associated with keystone plant species. Arthropod-Plant Interactions 9, 9–21 (2015). https://doi.org/10.1007/s11829-014-9353-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-014-9353-9

Keywords

Navigation