Skip to main content

Ecosystem Engineers, Keystone Species

  • Chapter
  • First Online:
Ecological Systems

Abstract

This entry focuses on two ecological phenomena. The first is “keystone species” which is defined by Paine 1 as a species (mostly of high trophic status) whose activities exert a disproportionate influence on the patterns of species occurrence, distribution, and density in a community. The second is the concept of “ecosystem engineers” defined by Jones et al. [2 as organisms that directly or indirectly modulate the availability of resources (other than themselves) to other species by causing physical state changes in biotic or abiotic materials.

This chapter was originally published as part of the Encyclopedia of Sustainability Science and Technology edited by Robert A. Meyers. DOI:10.1007/978-1-4419-0851-3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Connectance:

The proportion of possible ecological interaction links between species that are realized.

Ecosystem engineer:

An organism that creates or modifies its habitat [19].

Ecosystem functioning:

The way ecosystems work related to abiotic and biotic components, such as chemicals, water, soil, microbes, plants, and animals.

Keystone species:

A species that has a disproportionate effect on its environment relative to its biomass (Paine 1995).

Trophic level:

The position a species occupies in a food chain.

Bibliography

Primary Literature

  1. Paine RT (1969a) A note on trophic complexity and community stability. Am Nat 103:91–93

    Article  Google Scholar 

  2. Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386

    Article  Google Scholar 

  3. Paine RT (1966) Food web complexity and species diversity. Am Nat 100:65–75

    Article  Google Scholar 

  4. Paine RT (1969b) The Pisaster-Tegula interaction: prey patches, predator food preference, and intertidal community structure. Ecology 50:950–961

    Article  Google Scholar 

  5. Power ME, Tilman D, Estes JA, Menge BA, Bond WJ, Mills LS, Daily G, Castilla JC, Lubchenco J, Paine RT (1996) Challenges in the quest for keystones. Bioscience 46:609–620

    Article  Google Scholar 

  6. Estes JA, Palmisano JF (1974) Sea otters: their role in structuring nearshore communities. Science 185:1058–1060

    Article  PubMed  CAS  Google Scholar 

  7. Terborgh J (1986) Keystone plant resources in tropical forest. In: Soulé ME (ed) Conservation biology. Sinauer Associates, Sunderland, pp 330–344

    Google Scholar 

  8. Bravo LG, Belliure J, Rebollo S (2009) European rabbits as ecosystem engineers: warrens increase lizard density and diversity. Biodivers Conserv 18:869–885

    Article  Google Scholar 

  9. Darwin CR (1881) The formation of vegetable mould through the action of worms, with observations of their habits. John Murray, London

    Google Scholar 

  10. Dangerfield JM, McCarthy TS, Ellery WN (1998) The mound-building termite Macrotermes michaelseni as an ecosystem engineer. J Trop Ecol 14:507–520

    Article  Google Scholar 

  11. Eisenhauer N (2010) The action of an animal ecosystem engineer: identification of the main mechanisms of earthworm impacts on soil microarthropods. Pedobiologia 53:343–352

    Article  Google Scholar 

  12. Wright JP, Jones CG, Flecker AS (2002) An ecosystem engineer, the beaver, increases species richness at the landscape scale. Oecologia 132:96–101

    Article  Google Scholar 

  13. Gutiérrez JL, Jones CG, Strayer DL, Iribarne OO (2003) Mollusks as ecosystem engineers: the role of shell production in aquatic habitats. Oikos 101:71–90

    Article  Google Scholar 

  14. Flecker AS, Taylor BW (2004) Tropical fishes as biological bulldozers: density effects on resource heterogeneity and species diversity. Ecology 85:2267–2278

    Article  Google Scholar 

  15. Lill JT, Marquis RI (2003) Ecosystem engineering by caterpillars increases insect herbivore diversity on white oak. Ecology 84:682–690

    Article  Google Scholar 

  16. Schwindt E, De Francesco C, Iribarne OO (2004) Individual and reef growth of the non-native reef-building polychaete Ficopomatus enigmaticus in a south-western Atlantic coastal lagoon. J Mar Biol Assoc UK 84:987–93

    Article  Google Scholar 

  17. Perelman SB, Burkart SE, León RJC (2003) The role of native tussock grass (Paspalum quadrifarium Lam.) in structuring plant communities in the Flooding Pampa grasslands, Argentina. Biodivers Conserv 12:225–238

    Article  Google Scholar 

  18. Fogel BN, Crain CM, Bertness MD (2004) Community level engineering effects of Triglochin maritima (seaside arrowgrass) in a salt marsh in northern New England, USA. J Ecol 92:589–597

    Article  Google Scholar 

  19. Berkenbusch K, Rowden AA (2003) Ecosystem engineering – moving away from ‘just-so’ stories. New Zeal J Ecol 27:67–73

    Google Scholar 

  20. Sanders D, van Veen FJF (2011) Ecosystem engineering and predation: the multi-trophic impact of two ant species. J Anim Ecol 80:569–765

    Article  PubMed  Google Scholar 

  21. Wright JP, Jones CG (2004) Predicting effects of ecosystem engineers on patch-scale species richness from primary productivity. Ecology 85:2071–2081

    Article  Google Scholar 

  22. Wright JP, Jones CG (2006) The concept of organisms as ecosystem engineers ten years on: progress, limitations, and challenges. BioScience 56:203–209

    Article  Google Scholar 

  23. De Ruiter PC, Wolters V, Moore JC, Winemiller KO (2005) Food web ecology, playing Jenga and beyond. Science 309:68–71

    Article  PubMed  Google Scholar 

  24. Christianou M, Ebenman B (2005) Keystone species and vulnerable species in ecological communities: strong or weak interactors? J Theor Biol 235:95–103

    Article  PubMed  Google Scholar 

  25. Libralato S, Christensen V, Pauly D (2006) A method for identifying keystone species in food web models. Ecol model 195:153–171

    Article  Google Scholar 

  26. Jordán F, Liu W-C, Davis AJ (2006) Topological keystone species: measures of positional importance in food webs. Oikos 112:535–546

    Article  Google Scholar 

  27. Solé RV, Montoya JM (2001) Complexity and fragility in ecological networks. P Roy Soc B-Biol Sci 268:2039–2045

    Article  Google Scholar 

  28. Dunne JA, Williams RJ, Martinez ND (2002) Network structure and biodiversity loss in foodwebs: robustness increases with connectance. Ecol Lett 5:558–567

    Article  Google Scholar 

  29. Wilby A, Shachak M, Boeken B (2001) Integration of ecosystem engineering and trophic effects of herbivores. Oikos 92:436–444

    Article  Google Scholar 

  30. Zhang YX, Richardson JS, Negishi JN (2004) Detritus processing, ecosystem engineering, and benthic diversity: a test of predator-omnivore interference. J Anim Ecol 73:756–766

    Article  Google Scholar 

  31. De Visser SN, Freymann BP, Olff H (2011) The Serengeti food web: empirical quantification and analysis of topological changes under increasing human impact. J Anim Ecol 80:484–494

    Article  PubMed  Google Scholar 

  32. Jones CG, Lawton JH, Shachak M (1997) Positive and negative effects of organisms as physical ecosystem engineers. Ecology 78:1946–1957

    Article  Google Scholar 

  33. Schwartz MW, Brigham CA, Hoeksema JD, Lyons KG, Mills MH, van Mantgem PJ (2000) Linking biodiversity to ecosystem function:implications for conservation ecology. Oecologia 122:297–305

    Article  Google Scholar 

  34. Giller PS, O’Donovan G (2002) Biodiversity and ecosystem function: do species matter? Biol Environ 102B:129–139

    Article  Google Scholar 

  35. Diaz S, Cabido M (2001) Vive la difference: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16:646–655

    Article  Google Scholar 

  36. Sala OE, Lauenroth WK, McNaughton SJ, Rusch G, Zhang X (1996) Biodiversity and ecosystem functioning in grasslands. In: Mooney HA et al (eds) Functional role of biodiversity: a global perspective. Wiley, Chichester, pp 129–149

    Google Scholar 

  37. Bremner J (2008) Species’ traits and ecological functioning in marine conservation and management. J Exp Marine Biol Ecol 366:37–47

    Article  Google Scholar 

  38. Menge BA, Berlow EL, Balchette CA, Navarrete SA, Yamada SB (1994) The keystone species concept: variation in interaction strength in a rocky intertidal habitat. Ecol Monog 64:249–286

    Article  Google Scholar 

  39. Brose U, Berlow EL, Martinez LD (2005) Scaling up keystone effects from simple to complex ecological networks. Ecol Lett 8:1317–1325

    Article  Google Scholar 

  40. Mills LS, Soulé ME, Doak DF (1993) The keystone-species concept in ecology and conservation. Bioscience 43:219–224

    Article  Google Scholar 

  41. Okey TA, Banks S, Born AF, Bustamante RH, Calvopiña M, Edgar GJ, Espinoza E, Fariña JM, Garske LE, Reck GK, Salazar S, Shepherd S, Toral-Granda V, Wallem P (2004) A trophic model of a Galapagos subtidal rocky reef for evaluating fisheries and conservation strategies. Ecol Model 172:383–401

    Article  Google Scholar 

  42. Soulé ME, Estes AJ, Miller B, Honnold DL (2005) Strongly interacting species: conservation policy, management and ethics. BioScience 55:168–176

    Article  Google Scholar 

  43. Rooney N, McCann K, Gellner G, Moore JC (2006) Structural asymmetry and the stability of diverse food webs. Nature 442:265–269

    Article  PubMed  CAS  Google Scholar 

  44. Boyd I, Wanless S, Camphuysen CJ (eds) (2006) Top predators in marine ecosystems. Cambridge University Press, Cambridge, UK

    Google Scholar 

  45. Johnson CN (2010) Red in tooth and claw: how top predators shape terrestrial ecosystems. J Anim Ecol 79:723–725

    Article  PubMed  Google Scholar 

  46. Borrvall C, Ebenman B (2006) Early onset of secondary extinction in ecological communities following the loss of top predators. Ecol Lett 9:435–442

    Article  PubMed  Google Scholar 

  47. Henke SE, Bryant FC (1999) Effects of coyote removal on the faunal community in western Texas. J Wildlife Manage 63:1066–1081

    Article  Google Scholar 

  48. Crooks JA, Soulé ME (1999) Lag times in population explosions of invasive species: causes and implications. In: Viken A (ed) Invasive species and biodiversity management. Kluwer, Dordrecht, pp 103–126

    Chapter  Google Scholar 

  49. Letnic M, Koch F, Gordon C, Crowther MS, Dickman CR (2009) Keystone effects of an alien top-predator stem extinctions of native mammals. Proc Roy Soc Biol Sci 276:3249–3256

    Article  Google Scholar 

  50. McLaren BE, Peterson RO (1994) Wolves, moose, and tree rings on isle royale. Science 266:1555–1558

    Article  PubMed  CAS  Google Scholar 

  51. Ripple WJ, Beschta RL (2003) Wolf reintroduction, predation risk, and cottonwood recovery in Yellowstone National Park. Forest Ecol Manag 184:299–313

    Article  Google Scholar 

  52. Owen-Smith RN (1988) Megaherbivores: the influence of very large body size on ecology. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  53. Bush GL (1993) A reaffirmation of Santa Rosalia, or why are there so many kinds of small animals? In: Lees DR, Edwards D (eds) Evolutionary patterns and processes. Academic, London, pp 229–249

    Google Scholar 

  54. Olff H, Ritchie ME, Prins HHT (2002) Global environmental controls of diversity in large herbivores. Nature 415:901–904

    Article  PubMed  CAS  Google Scholar 

  55. Haskell JP, Ritchie ME, Olff H (2002) Fractal geometry predicts varying body size scaling relationships for mammal and bird home ranges. Nature 418:527–530

    Article  PubMed  CAS  Google Scholar 

  56. Peters RH (1983) The ecological implications of body size. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  57. Ritchie ME, Olff H (1999) Spatial scaling laws yield a synthetic theory of biodiversity. Nature 400:557–560

    Article  PubMed  CAS  Google Scholar 

  58. Allesina S, Bodini A, Bondavalli C (2006) Secondary extinctions in ecological networks: bottlenecks unveiled. Ecol Model 194:150–161

    Article  Google Scholar 

  59. Dunne JA, Williams RJ, Martinez ND (2004) Network structure and robustness of marine food webs. Marine Ecol Prog Ser 273:291–302

    Article  Google Scholar 

  60. Estrada E (2007) Characterisation of topological keystone species: local, global and “meso-scale” centralities in food webs. Ecol Complex 4:48–57

    Article  Google Scholar 

  61. Jordán F, Benedek Z, Podani J (2007) Quantifying positional importance in food webs: a comparison of centrality indices. Ecol Model 205:270–275

    Article  Google Scholar 

  62. Jordán F, Liu W-C, Mike A (2009) Trophic field overlap: a new approach to quantify keystone species. Ecol Model 220:2899–2907

    Article  Google Scholar 

  63. De Ruiter PC, Neutel A, Moore JC (1995) Energetics, patterns of interaction strengths, and stability in real ecosystems. Science 269:1257–1260

    Article  PubMed  CAS  Google Scholar 

  64. Batcheler CL (1983) The possum and rata-kamahi dieback in New Zealand: a review. Pac Sci 37:415–426

    Google Scholar 

  65. Rose AB, Pekelharing CJ, Platt KH (1992) Magnitude of canopy dieback and implications for conservation of southern rata-kamahi (Metrosideros umbellate-Weinmannia racemosa) forests, central Westland, New Zealand. New Zeal J Ecol 16:23–32

    Google Scholar 

  66. Wardle JA (1984) The New Zealand beeches: ecology, utilization and management. New Zealand Forest Service, Christchurch, p 447

    Google Scholar 

  67. Holdaway RN (1999) A spatio-temporal model for the invasion of the New Zealand archipelago by the Pacific rat Rattus exulans. J Roy Soc New Zeal 29:91–105

    Article  Google Scholar 

  68. Madenjian CP, Pothoven SA, Dettmers JM, Holuszko JD (2006) Changes in seasonal energy density of alewife (Alosa pseudoharengus) in Lake Michigan after invasion of dreissenid mussels. Can J Fish Aquat Sci 63:1–12

    Article  Google Scholar 

  69. Knapp PA (1996) Cheatgrass (Bromus tectorum L.) dominance in the Great Basin desert. Global Environ Chang 6:37–52

    Article  Google Scholar 

  70. Simberloff D (1998) Flagships, umbrellas, and keystones: is single-species management passé in the landscape era? Biol Conserv 83:247–257

    Article  Google Scholar 

  71. Boogert NJ, Paterson DM, Laland KN (2006) The implications of niche construction and ecosystem engineering for conservation biology. BioScience 56:1–9

    Article  Google Scholar 

  72. Crain CM, Bertness MD (2006) Ecosystem engineering across environmental gradients: implications for conservation and management. BioScience 56:211–218

    Article  Google Scholar 

  73. Black HIJ, Okwakol MJN (1997) Agricultural intensification, soil biodiversity and agroecosystem function in the tropics: the role of termites. Appl Soil Ecol 6:37–54

    Article  Google Scholar 

  74. Fragoso C, Brown GG, Patron JC, Blanchart E, Lavelle P, Pashanasi B, Senapati B, Kumar T (1997) Agricultural intensification, soil biodiversity and agroecosystem function in the tropics: the role of earthworms. Appl Soil Ecol 6:17–35

    Article  Google Scholar 

  75. Paine RT (1995) A conversation on refining the concept of keystone species. Conserv Biol 9(4):962–964

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter C. de Ruiter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

de Visser, S., Thébault, E., de Ruiter, P.C. (2013). Ecosystem Engineers, Keystone Species. In: Leemans, R. (eds) Ecological Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5755-8_4

Download citation

Publish with us

Policies and ethics