Skip to main content
Log in

Factors affecting Agrobacterium-mediated transformation in Hybanthus enneaspermus (L.) F. Muell.

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

Agrobacterium tumefaciens-mediated transformation system was established for Hybanthus enneaspermus using leaf explants with the strain LBA4404 harbouring pCAMBIA 2301 carrying the nptII and gusA genes. Sensitivity of leaf explants to kanamycin was standardized (100 mg/l) for screening the transgenic plants. Transformation parameters (OD, virulence inducer, infection time, co-cultivation period, bactericidal antibiotics, etc.) influencing the gene transfer and integration were assessed in the present investigation. Fourteen-day pre-cultured explants were subjected with Agrobacterium strain LBA4404. Optimized parameters such as culture density of 0.5 OD600, infection time of 6 min, AS concentration of 150 µM with 3 days co-cultivation revealed maximum transformation efficiency based on GUS expression assay. The presence of gusA in transgenics was confirmed by polymerase chain reaction and Southern blotting analysis. The present transformation experiment yielded 20 shoots/explant with higher transformation efficiency (28 %). The protocol could be used to introduce genes for trait improvement as well as for altering metabolic pathway for secondary metabolites production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

AS:

Acetosyringone

BA:

6-Benzyladenine

CaMV 35S:

Cauliflower mosaic virus 35S promoter

GUS:

β-Glucuronidase

gusA:

β-Glucuronidase

IBA:

Indole-3-butyric acid

MES:

2-[N-Morpholino]ethanesulfonic acid

MS:

Murashige and Skoog

NAA:

a-Naphthaleneacetic acid

nptII:

Neomycin phosphotransferase

OD:

Optical density

PCR:

Polymerase chain reaction

RH:

Relative humidity

Rpm:

Rotation per minute

YEP:

Yeast extract and peptone medium

References

  • Aileni M, Abbagani S, Zhang P (2011) Highly efficient production of transgenic Scoparia dulcis L. mediated by Agrobacterium tumefaciens: plant regeneration via shoot organogenesis. Plant Biotechnol Rep 5:147–156

    Article  Google Scholar 

  • An X, Wang B, Liu L, Jiang H, Chen J, Ye S, Chen L, Guo P, Huang X, Peng D (2014) Agrobacterium-mediated genetic transformation and regeneration of transgenic plants using leaf midribs as explants in ramie [Boehmeria nivea (L.) Gaud]. Mol Biol Rep. doi:10.1007/s11033-014-3188-4

    Google Scholar 

  • Bond JE, Roose ML (1998) Agrobacterium-mediated transformation of the commercially important citrus cultivar Washington navel orange. Plant Cell Rep 18:229–234

    Article  CAS  Google Scholar 

  • Boominathan V, Parimaladevi B, Mandal SC, Ghoshal SK (2004) Anti-inflammatory evaluation of Ionidium suffruticosam Ging. in rats. J Ethnopharmacol 91:367–370

    Article  CAS  PubMed  Google Scholar 

  • De Clercq J, Zambre M, Van Montagu M, Dillen W, Angenon G (2002) An optimized agrobacterium-mediated transformation procedure for Phaseolus acutifolius A. Gray. Plant Cell Rep 21:333–340

    Article  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA mini preparation: version II. Plant Mol Biol Rep 1:19–21

    Article  CAS  Google Scholar 

  • Dong JZ, McHughen A (1993) An improved procedure for production of transgenic flax plants using Agrobacterium tumefaciens. Plant Sci 88:61–71

    Article  CAS  Google Scholar 

  • Du N, Pijut PM (2009) Agrobacterium-mediated transformation of Fraxinus pennsylvanica hypocotyls and plant regeneration. Plant Cell Rep 28:915–923

    Article  CAS  PubMed  Google Scholar 

  • Goldberg JB, Ohman DE (1984) Cloning and expression in Pseudomonas aeruginosa of a gene involved in the production of alginate. J Bacteriol 158:1115–1121

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Padilla IM, Webb K, Scorza R (2003) Early antibiotic selection and efficient rooting and acclimatization improve the production of transgenic plum plants (Prunus domestica L.). Plant Cell Rep 22:38–45

    Article  CAS  PubMed  Google Scholar 

  • Gu XF, Meng H, Qi G, Zhang JR (2008) Agrobacterium-mediated transformation of the winter jujube (Zizyphus jujuba Mill.). Plant Cell Tiss Organ Cult 94:23–32

    Article  CAS  Google Scholar 

  • Hemalatha S, Wahi AK, Singh PN, Chansouria JPN (2003) Anticonvulsant and free radical scavenging activity of Hybanthus enneaspermus: a preliminary screening. Indian J Tradit Knowl 4:383–388

    Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan NW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jha P, Shashi S, Rustagi A, Agnihotri P, Kulkarni V, Bhat V (2011) Efficient Agrobacterium-mediated transformation of Pennisetum glaucum (L.) R. Br. using shoot apices as explant source. Plant Cell Tiss Organ Cult 107:501–512

    Article  CAS  Google Scholar 

  • Joubert P, Beaupe`re D, Lelie`vre P, Wadouachi A, Sangwan RS, Sangwan-Norreel BS (2002) Effects of phenolic compounds on Agrobacterium vir genes and gene transfer induction-a plausible molecular mechanism of phenol binding protein activation. Plant Sci 162:733–743

    Article  CAS  Google Scholar 

  • Karthikeyan A, Pandian SK, Ramesh M (2011) Agrobacterium-mediated transformation of leaf base derived callus tissues of popular indica rice (Oryza sativa L. subsp. indica cv. ADT 43). Plant Sci 181:258–268

    Article  CAS  PubMed  Google Scholar 

  • Kim KH, Lee YH, Kim D, Park YH, Lee JY, Wang YS, Kim YH (2004) Agrobacterium-mediated genetic transformation of Perilla frutescens. Plant Cell Rep 23:386–390

    Article  CAS  PubMed  Google Scholar 

  • Kirby J, Keasling JD (2009) Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Annu Rev Plant Biol 60:335–355

    Article  CAS  PubMed  Google Scholar 

  • Koroch A, Kapteyn J, Juliana HR, Simon JE (2002) In vitro regeneration and Agrobacterium transformation of Echinacea purpurea leaf explants. Trends in new crops and new uses. ASHS Press, Alexandria, pp 522–526

    Google Scholar 

  • Majumder PL, Basu A, Mal D (1979) Chemical constituents of Hybanthus enneaspermus. Ind J Chem 17:297–298

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Padmanabhan P, Sahi SV (2009) Genetic transformation and regeneration of Sesbania drummondii using cotyledonary nodes. Plant Cell Rep 28:31–40

    Article  CAS  PubMed  Google Scholar 

  • Park B-J, Liu ZC, Kanno A, Kameya T (2005) Genetic improvement of Chinese cabbage for salt and drought tolerance by constitutive expression of a B. napus LEA gene. Plant Sci 169:553–558

    Article  CAS  Google Scholar 

  • Patel DK, Kumar R, Prasad SK, Sairam K, Hemalatha S (2011) Antidiabetic and in vitro antioxidant potential of Hybanthus enneaspermus Linn F. Muell in streptozotocin—induced diabetic rats. Asian Pac J Trop Biomed 14:316–322

    Article  Google Scholar 

  • Prakash E, Sha Valli Khan PS, Sairam Reddy P, Rao KR (1999) Regeneration of plants from seed-derived callus of Hybanthus enneaspermus L. Muell., a rare ethnobotanical herb. Plant Cell Rep 18:873–878

    Article  CAS  Google Scholar 

  • Premkumar G, Arumugam N, Muthuramkumar S, Varatharaju G, Rajarathinam K (2013) Improved micropropagation in Hybanthus enneaspermus L. Muell. Am J Plant Sci 4:1169–1172

    Article  Google Scholar 

  • Rajesh M, Jeyaraj M, Sivanandhan G, Subramanyam K, Mariashibu TS, Mayavan S, Dev GK, Anbazhagan VR, Manickavasagam M, Ganapathi A (2013) Agrobacterium-mediated transformation of the medicinal plant Podophyllum hexandrum Royle (syn. P. emodi Wall. ex Hook.f. and Thomas). Plant Cell Tiss Organ Cult 114:71–82

    Article  CAS  Google Scholar 

  • Sahoo S, Kar DM, Mohapatra S, Rout SP, Dash SK (2006) Antibacterial activity of Hybanthus enneaspermus against selected urinary tract pathogens. Indian J Pharm Sci 68:653–655

    Article  Google Scholar 

  • Sambrook J, Fritch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring

    Google Scholar 

  • Saxena H (1975) A survey of the plants of Orissa (India) for tannins, saponins, flavonoids and alkaloids. Lloydia 38:346–351

    CAS  PubMed  Google Scholar 

  • Schafer H, Wink M (2009) Medicinally important secondary metabolites in recombinant microorganisms or plants: progress in alkaloid biosynthesis. Biotechnol J 4:1684–1703

    Article  PubMed  Google Scholar 

  • Selvaraj N, Kasthurirengan S, Vasudevan A, Manickavasagam M, Choi CW, Ganapathi A (2010) Evaluation of green fluorescent protein as a reporter gene and phosphinothricin as the selective agent for achieving a higher recovery of transformants in cucumber (Cucumis sativus L. cv. Poinsett76) via Agrobacterium tumefaciens. In Vitro Cell Dev Biol Plant 46:329–337

    Article  CAS  Google Scholar 

  • Sharma M, Kothari-Chajer A, Jagga-Chugh S, Kothari SL (2011) Factors influencing Agrobacterium tumefaciens-mediated genetic transformation of Eleusine coracana (L.) Gaertn. Plant Cell Tiss Organ Cult 105:93–104

    Article  CAS  Google Scholar 

  • Shilpa KS, Kumar VD, Sujatha M (2010) Agrobacterium-mediated genetic transformation of safflower (Carthamus tinctorius L.). Plant Cell Tiss Organ Cult 103:387–401

    Article  CAS  Google Scholar 

  • Simonsen SM, Sando L, Ireland DC, Colgrave ML, Bharathi R, Göransson U, Craik DJ (2005) A continent of plant defense peptide diversity: cyclotides in Australian Hybanthus (Violaceae). Plant Cell 17:3176–3189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sivanandhan G, Kapil Dev G, Theboral J, Selvaraj N, Ganapathi A, Manickavasagam M (2015) Sonication, Vacuum Infiltration and Thiol Compounds Enhance the Agrobacterium-Mediated Transformation Frequency of Withania somnifera(L.) Dunal. PLoS ONE 10(4): e0124693. doi:10.1371/journal.pone.0124693

    Article  PubMed  PubMed Central  Google Scholar 

  • Song GQ, Walworth A (2013) Agrobacterium tumefaciens-mediated transformation of Atropa belladonna. Plant Cell Tiss Organ Cult 115:107–113

    Article  CAS  Google Scholar 

  • Sonia Saini R, Singh RP, Jaiswal PK (2007) Agrobacterium tumefaciens mediated transfer of Phaseolus vulgaris α-amylase inhibitor-1 gene into mungbean: Vigna radiata (L.) Wilczek using bar as selectable marker. Plant Cell Rep 26:187–198

    Article  CAS  PubMed  Google Scholar 

  • Stevens ME, Pijut PM (2014) Agrobacterium-mediated genetic transformation and plant regeneration of the hardwood tree species Fraxinus profunda. Plant Cell Rep. doi:10.1007/s00299-014-1562-2

    PubMed  Google Scholar 

  • Tang K, Shen Q, Yan T, Fu X (2014) Transgenic approach to increase artemisinin content in Artemisia annua L. Plant Cell Rep. doi:10.1007/s00299-014-1566-y

    Google Scholar 

  • Tripathy S, Sahoo SP, Pradhan D, Sahoo S, Satapathy DK (2009) Evaluation of antiarthritic potential of Hybanthus enneaspermus. Afr J Pharm Pharmacol 3:611–614

    Google Scholar 

  • Velayutham P, Karthi C, Nalini P, Jahirhussain G (2012) In vitro regeneration and mass propagation of Hybanthus enneaspermus (L.) F. Muell. from the stem explants through callus culture. J Agric Technol 8:1119–1128

    CAS  Google Scholar 

  • Wang H, Wang C, Liu H, Tang R, Zhang H (2011) An efficient Agrobacterium-mediated transformation and regeneration system for leaf explants of two elite aspen hybrid clones Populus alba × P. berolinensis and Populus davidiana × P. bolleana. Plant Cell Rep 30:2037–2044

    Article  CAS  PubMed  Google Scholar 

  • Weniger B, Lagnika L, Vonthron-Sénécheau C, Adjobimey T, Gbenou J, Moudachirou M, Sanni A (2004) Evaluation of ethnobotanically selected Benin medicinal plants for their in vitro antiplasmodial activity. J Ethnopharmacol 90:279–284

    Article  PubMed  Google Scholar 

  • Yasmeen A (2009) An improved protocol for the regeneration and transformation of tomato (cv Rio Grande). Acta Physiol Plant 31:1271–1277

    Article  CAS  Google Scholar 

  • Yevtushenko DP, Misra S (2010) Efficient Agrobacterium-mediated transformation of commercial hybrid poplar Populus nigra L. × P. maximowiczii A. Henry. Plant Cell Rep 29:211–229

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Agriculture Research Center (Grant No. 06362010-0010) from the Technology Development Program for Agriculture and Forestry, Ministry of Agriculture, Forestry and Fisheries, Republic of Korea. Prof. A. Ganapathi is grateful to the University Grants Commissions (UGC), Government of India, for the award of UGC-Emeritus Fellowship. C. Arunachalam and A. Alharbi Sulaiman would like to extend their sincere appreciation to the deanship of Scientific Research at King Saud University for its funding of this research through the research group No: RG-1435-081.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ganeshan Sivanandhan or Yong Pyo Lim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivanandhan, G., Arunachalam, C., Vasudevan, V. et al. Factors affecting Agrobacterium-mediated transformation in Hybanthus enneaspermus (L.) F. Muell.. Plant Biotechnol Rep 10, 49–60 (2016). https://doi.org/10.1007/s11816-016-0385-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-016-0385-8

Keywords

Navigation