Skip to main content
Log in

Induction of pumpkin glutathione S-transferases by different stresses and its possible mechanisms

  • Published:
Biologia Plantarum

Abstract

Induction of pumpkin (Cucurbita maxima Duch.) glutathione S-transferases (GSTs) by different stresses and endogenous trans-2-hexenal content were determined in search of a common signal for GST induction. All of the stresses showed significant induction, As2O3 causing the highest induction followed by trans-2-hexenal. The trans-2-hexenal content was highest in trans-2-hexenal-treated seedlings and next-highest in methyl jasmonate-treated seedlings, whereas high temperature- and As2O3-treated seedlings had trans-2-hexenal contents lower than that of control seedlings. Induction of GST, lipoxygenase (LOX) and hydroperoxide lyase (HPL) was compared, since trans-2-hexenal and methyl jasmonate are the products of the LOX pathway. All four stresses showed weak LOX induction, high temperature causing the highest induction. However, only methyl jasmonate caused weak HPL induction. Both antioxidants or oxidants induced GST to different degrees. Glutathione contents of reduced glutathione (GSH) or oxidized glutathione (GSSG)-treated seedlings were significantly higher than the content of control seedlings, whereas those treated with other antioxidants or oxidants had contents similar to or less than control seedlings. The GSH:GSSG ratio was lowest in GSSG-treated seedlings and next-lowest in GSH-treated seedlings. The results of this study suggest that pumpkin GSTs are not induced through a common signalling pathway and that redox perturbation plays a role in pumpkin GST induction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADH:

alcohol dehydrogenase

DDT:

threo-1,4-dimercapto-2,3-butanediol

EDTA:

ethylenediaminetetraacetic acid

GSH:

reduced glutathione

GSSG:

oxidized glutathione

GST:

glutathione S-transferase

HPL:

hydroperoxide lyase

JA:

jasmonic acid

LOX:

lipoxygenase

MeJA:

methyl jasmonate

NADH:

nicotinamide adenine dinucleotide reduced form

SDS-PAGE:

sodium dodecyl sulfate-polyacrylamide gel electrophoresis

References

  • Alscher, R.G.: Biosynthesis and antioxidant function of glutathione in plants.-Physiol. Plant. 77: 457–464, 1989.

    CAS  Google Scholar 

  • Bate, N.J., Rothstein, S.J.: C6-volatiles derived from the lipoxygenase pathway induce a subset of defense-related genes.-Plant J. 16: 561–569, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Bernardi, R., Nali, C., Ginestri, P., Pugliesi, C., Lorenzini, G., Durante, M.: Antioxidant enzyme isoforms on gels in two poplar clones differing in sensitivity after exposure to ozone.-Biol. Plant. 48: 41–48, 2004.

    Article  CAS  Google Scholar 

  • Blee, E.: Phytooxylipins and plant defense reactions.-Progress Lipid Res. 37: 33–72, 1998.

    Article  CAS  Google Scholar 

  • Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.-Anal. Biochem. 72: 248–254, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Buwalda, F., De Kok, L.J., Stulen, I., Kuiper, P.J.C.: Cysteine, γ-glutamylcysteine and glutathione contents of spinach leaves as affected by darkness and application of excess sulfur.-Physiol. Plant. 74: 663–668, 1988.

    CAS  Google Scholar 

  • Croft, K.P.C., Voisey, C.R., Slusarenko, A.J.: Mechanism of hypersensitive cell collapse: correlation of increased lipoxygenase activity with membrane damage in leaves of Phaseolus vulgaris (L.) cv. Red Mexican inoculated with avirulent race 1 cells of Pseudomonas syringae pv. phaseolicola.-Physiol. mol. Plant Pathol. 36: 49–62, 1990.

    Article  CAS  Google Scholar 

  • DeRidder, B.P., Dixon, D.P., Beussman, D.J., Edwards, R., Goldsbrough, P.B.: Induction of glutathione S-transferases in Arabidopsis by herbicide safeners.-Plant Physiol. 130: 1497–1505, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Dixon, D.P., Davis, B.G., Edwards, R.: Functional divergence in the glutathione transferase superfamily in plants — identification of two classes with putative functions in redox homeostasis in Arabidopsis thaliana.-J. biol. Chem. 277: 30859–30869, 2002.

    PubMed  CAS  Google Scholar 

  • Frear, D.S., Swanson, H.R.: Biosynthesis of S-(4-ethylamino-6-isopropylamino-2-s-triazine) glutathione: partial purification and properties of glutathione S-transferase from corn.-Phytochemistry 9: 2123–2132, 1970.

    Article  CAS  Google Scholar 

  • Fujita, M., Hossain, M.Z.: Modulation of pumpkin glutathione S-transferases by aldehydes and related compounds.-Plant Cell Physiol. 44: 481–490, 2003.

    PubMed  CAS  Google Scholar 

  • Grant, C. M., MacIver, F.H., Dawes, I.W.: Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae.-Curr. Genet. 29: 511–515, 1996.

    PubMed  CAS  Google Scholar 

  • Hayes, J.D., Pulford, D.J.: The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance.-Crit. Rev. Biochem. mol. Biol. 30: 445–600, 1995.

    PubMed  CAS  Google Scholar 

  • Howe, G.A., Schilmiller, A.L.: Oxylipin metabolism in response to stress.-Curr. Opinion Plant Biol. 5: 230–236, 2002.

    Article  CAS  Google Scholar 

  • Knorzer, O.C., Durner, J., Boger, P.: Alterations in the antioxidative system of suspension-cultured soybean cells (Glycine max) induced by oxidative stress.-Physiol. Plant. 97: 388–396, 1996.

    Article  Google Scholar 

  • Komives, T., Gullner, G., Kiraly, Z.: The ascorbate-glutathione cycle and oxidative stresses in plants.-In: Hatzios, K.K. (ed.): Regulation of Enzymatic Systems Detoxifying Xenobiotics in Plants. Pp. 85–96. Kluwer Academic Publishers, Dordrecht 1997.

    Google Scholar 

  • Mannervik, B., Danielson, U.H.: Glutathione transferases — structure and catalytic activity.-CRC Crit. Rev. Biochem. 23: 283–337, 1988.

    PubMed  CAS  Google Scholar 

  • Mauch, F., Dudler, R.: Differential induction of distinct glutathione S-transferases of wheat by xenobiotics and by pathogen attack.-Plant Physiol. 102: 1193–1201, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Noctor, G., Arisi, A.C.M., Jouanin, L., Valadier, M.H., Roux, Y., Foyer, C.H.: Light-dependent modulation of foliar glutathione synthesis and associated amino acid metabolism in transformed poplar.-Planta 202: 357–369, 1997a.

    Article  CAS  Google Scholar 

  • Noctor, G., Arisi, A.C.M., Jouanin, L., Valadier, M.H., Roux, Y., Foyer, C.H.: The role of glycine in determining the rate of glutathione synthesis in poplars. Possible implications for glutathione production during stress.-Physiol. Plant. 100: 255–263, 1997b.

    Article  CAS  Google Scholar 

  • Noctor, G., Gomez, L., Helene, V., Foyer, C.H.: Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signaling.-J. exp. Bot. 53: 1283–1304, 2002.

    PubMed  CAS  Google Scholar 

  • Noctor, G., Strohm, M., Jouanin, L., Kunert, K.J., Foyer, C.H., Rennenberg, H.: Synthesis of glutathione in leaves of transgenic poplar (Populus tremula × P. alba) overexpressing γ-glutamylcysteine synthetase.-Plant Physiol. 112: 1071–1078, 1996.

    PubMed  CAS  Google Scholar 

  • Pinkus, R., Weiner, L.M., Daniel, V.: Role of oxidants and antioxidants in the induction of AP-1, NF-κB, and glutathione S-transferase gene expression.-J. biol. Chem. 271: 13422–13429, 1996.

    PubMed  CAS  Google Scholar 

  • Polidoros, A.N., Scandalios, J.G.: Role of hydrogen peroxide and different classes of antioxidants in the regulation of catalase and glutathione S-transferase gene expression in maize (Zea mays L.).-Physiol. Plant. 106: 112–120, 1999.

    Article  CAS  Google Scholar 

  • Roxas, V.P., Lodhi, S.A., Garrett, D.K., Mahan, J.R., Allen, R.D.: Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase.-Plant Cell Physiol. 41: 1229–1234, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Roxas, V.P., Smith, R.K., Jr., Allen, E.R., Allen, R.D.: Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress.-Nat. Biotechnol. 15: 988–991, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Skorzynska-Polit, E., Drazkiewicz, E., Krupa, Z.: The activity of the antioxidative system in cadmium-treated Arabidopsis thaliana.-Biol. Plant. 47: 71–78, 2003/4.

    CAS  Google Scholar 

  • Strohm, M., Jouanin, L., Kunert, K.J., Pruvost, C., Polle, A., Foyer, C.H., Rennenberg, H.: Regulation of glutathione synthesis in leaves of transgenic poplar (Populus tremula × P. alba) overexpressing glutathione synthetase.-Plant J. 7: 141–145, 1995.

    Article  CAS  Google Scholar 

  • Ulmasov, T., Ohmiya, A., Hagen, G., Guilfoyle, T.: The soybean GH2/4 gene that encodes a glutathione S-transferase has a promoter that is activated by a wide range of chemical agents.-Plant Physiol. 108: 919–927, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Vancanneyt, G., Sanz, C., Farmaki, T., Paneque, M., Ortego, M., Castanera, P., Sanchez-Serrano, J.J.: Hydroperoxide lyase depletion in transgenic potato plants leads to an increase in lipid performance.-Proc. nat. Acad. Sci. USA 98: 8139–8144, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Vick, B.A.: A spectrophotometric assay for hydroperoxide lyase.-Lipids 26: 315–320, 1991.

    CAS  Google Scholar 

  • Wilce, M.C.J., Parker, M.W.: Structure and function of glutathione S-transferases.-Biochim. biophys. Acta 1205: 1–18, 1994.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fujita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hossain, M.Z., Hossain, M.D. & Fujita, M. Induction of pumpkin glutathione S-transferases by different stresses and its possible mechanisms. Biol Plant 50, 210–218 (2006). https://doi.org/10.1007/s10535-006-0009-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-006-0009-1

Additional key words

Navigation