Skip to main content
Log in

Temporal changes in the growth, saponin content and antioxidant defense in the adventitious roots of Panax ginseng subjected to nitric oxide elicitation

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

Nitric oxide (NO) is a diffusible, gaseous signaling molecule. In plants, NO influences growth and development, and it can also affect plant responses to various stresses. Because NO induces root differentiation and interacts with reactive oxygen species, we examined the temporal effect of NO elicitation on root growth, saponin accumulation and antioxidant defense responses in the adventitious roots of mountain ginseng (Panax ginseng). The observations revealed that NO is involved in root growth and saponin production. Elicitation with sodium nitroprusside (SNP) activated O2 -generating NADPH oxidase (NOX) activity, which most probably subsequently enhanced growth of adventitious roots of mountain ginseng. A severe inhibition of NOX activity and decline in dry weight of SNP elicited adventitious roots in the presence of NOX inhibitor (diphenyl iodonium, DPI), which further supports involvement of NOX in root growth. Enhanced activities of antioxidant enzymes by SNP appear to be responsible for low H2O2, less lipid peroxidation, and modulation of ascorbate and non-protein thiol statuses in the adventitious roots of mountain ginseng. Dry mass, saponin content and NOX activity was related with NO content present in adventitious roots of mountain ginseng.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

APX:

Ascorbate peroxidase

AsA:

Ascorbic acid

CAT:

Catalase

DHA:

Dehydroascorbate

DHAR:

DHA reductase

DTT:

Dithiothreitol

EDTA:

Ethylenediamine tetraacetic acid

GR:

Glutathione reductase

MDA:

Malondialdehyde

NOX:

NADPH oxidase

POD:

Peroxidase

ROS:

Reactive oxygen species

SNP:

Sodium nitroprusside

SOD:

Superoxide dismutase

TCA:

Trichloroacetic acid

XTT:

2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide sodium salt

References

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–379

    Article  PubMed  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971). Superoxide dismutase: improved assays and assays applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  PubMed  CAS  Google Scholar 

  • Beligni MV, Fath A, Bethke PC, Lamattina L, Jones RL (2002) Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layers. Plant Physiol 129:1642–1650

    Article  PubMed  CAS  Google Scholar 

  • Beligni MV, Lamattina L (1999) Nitric oxide protects against cellular damage produced by methylviologen herbicides in potato plants. Nitric Oxide 3:199–208

    Article  PubMed  CAS  Google Scholar 

  • Beligni MV, Lamattina L (2002) Nitric oxide interferes with plant photooxidative stress by detoxifying reactive oxygen species. Plant Cell Environ 25:737–748

    Article  CAS  Google Scholar 

  • Bisht SS, Sharma A, Chaturvedi K (1989) Certain metabolic lesions of chromium toxicity in radish. Indian J Agric Biochem 2:109–115

    CAS  Google Scholar 

  • Bloom AJ, Meyerhoff PA, Taylor AR, Rost TL (2003) Root development and absorption of ammonium and nitrate from the rhizosphere. J Plant Growth Reg 21:416–431

    Article  CAS  Google Scholar 

  • Boveris AD, Galatro A, Puntarulo S (2000) Effect of nitric oxide and plant antioxidants on microsomal content of lipid radicals. Biol Res 33:159–165

    Article  PubMed  CAS  Google Scholar 

  • Brennan T, Frenkel C (1977) Involvement of hydrogen peroxide in regulation of senescence in pear. Plant Physiol 59:411–416

    Article  PubMed  CAS  Google Scholar 

  • Carimi F, Zottini M, Costa A, Cattelan I, Michele RD, Terzi M, Schiavo FL (2005) NO signalling in cytokinin-induced programmed cell death. Plant Cell Environ 28:1171–1178

    Article  CAS  Google Scholar 

  • Cheng F-Y, Hsu S-Y, Kao C-H (2002). Nitric oxide counteracts the senescence of detached rice leaves induced by dehydration and polyethylene glycol but not by sorbitol. Plant Growth Reg 38:265–272

    Article  CAS  Google Scholar 

  • Clark D, Durner J, Navarre DA, Klessig DF (2000). Nitric oxide inhibition of tobacco catalase and ascorbate peroxidase. Molec Plant Microbe Interac 13:1380–1384

    Article  CAS  Google Scholar 

  • Correa-Aragunde N, Graziano M, Chevalier C, Lamattina L (2006) Nitric oxide modulates the expression of cell cycle regulatory genes during lateral root formation in tomato. J Exp Bot 57:581–588

    Article  PubMed  CAS  Google Scholar 

  • Correa-Aragunde N, Graziano M, Lamattina L (2004) Nitric oxide plays a central role in determining lateral root development in tomato. Planta 218:900–905

    Article  PubMed  CAS  Google Scholar 

  • Creus C, Graziano M, Casanovas E, Pereyra M, Simontacchi M, Puntarulo S, Barassi C, Lamattina L (2005) Nitric oxide is involved in the Azospirillum brasilense-induced lateral root formation in tomato. Planta 221:297–303

    Article  PubMed  CAS  Google Scholar 

  • Doulis AG, Debian N, Kingston-Smith AH, Foyer CH (1997) Differential localization of antioxidants in maize. Plant Physiol 114:1031–1037

    PubMed  CAS  Google Scholar 

  • Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic CMP and cyclic ADP-ribose. Proc Natl Acad Sci USA 95:10328–10333

    Article  PubMed  CAS  Google Scholar 

  • Fuquay T, Yoshikawa T (1987) Saponin production by cultures of Panax ginseng transformed with Agrobacterium photogenes. Plant Cell Rep 6:449–453

    Google Scholar 

  • Gapper C, Dolan L (2006) Control of plant development by reactive oxygen species. Plant Physiol 141:341–345

    Article  PubMed  CAS  Google Scholar 

  • Gouvêa CMCP, Souza JF, Magalhães CAN, Martins IS (1997) NO-releasing substances that induce growth elongation in maize root segments. Plant Growth Reg 21:183–187

    Article  Google Scholar 

  • Halliwell B (2006) Reactive species and antioxidants. redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322

    Article  PubMed  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplast, I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:180–198

    Google Scholar 

  • Hung KT, Chang CJ, Kao CH (2002) Paraquat toxicity is reduced by nitric oxide in rice leaves. J Plant Physiol 159:159–166

    Article  CAS  Google Scholar 

  • Jablonski PP, Anderson JW (1978) Light-dependent reduction of oxidised glutathione by ruptured chloroplasts. Plant Physiol 61:221–225

    PubMed  CAS  Google Scholar 

  • Lamattina L, Garcia-Mata C, Graziano M, Pagnussat G (2003) Nitric oxide: the versatility of an extensive signal molecule. Annu Rev Plant Biol 54:109–136

    Article  PubMed  CAS  Google Scholar 

  • Lamotte O, Coutois C, Barnavon L, Pugin A, Wendehenne D (2005) Nitric oxide in plants: the biosynthesis and cell signaling properties of a fascinating molecule. Planta 221:1–4

    Article  PubMed  CAS  Google Scholar 

  • Liszkay A, van der Zalm E, Schopfer P (2004) Production of reactive oxygen intermediates O2˙, H2O2, and OH˙ by maize roots and their role in wall loosening and elongation growth. Plant Physiol 136:3114–3123

    Article  PubMed  CAS  Google Scholar 

  • Millar AH, Day DA (1997) Alternative solutions to radical problems. Trends Plant Sci 2:289–290

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murgia I, Tarantino D, Vannini C, Bracale M, Carravieri S, Soave C (2004) Arabidopsis thaliana plants overexpressing thylakoidal ascorbate peroxidase show increased resistance to Paraquat induced photooxidative stress and to nitric oxide-induced cell death. Plant J 38:940–953

    Article  PubMed  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplast. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Roberts SC, Shuler ML (1997) Large-scale plant cell culture. Curr Opin Biotechnol 8:154–159

    Article  PubMed  CAS  Google Scholar 

  • Pagnussat GC, Lanteri ML, Lamattina L (2003) Nitric oxide and cyclic GMP are messengers in the indole acetic acid-induced adventitious rooting process. Plant Physiol 132:1241-1248

    Article  PubMed  CAS  Google Scholar 

  • Rubbo H, Radi R, Anselmi D, Kirk M, Barnes S, Butler J, Eiserich JP, Freeman BA (2000) Nitric oxide reaction with lipid peroxyl radicals spares alpha-tocopherol during lipid peroxidation. Greater oxidant protection from the pair nitric oxide/alphatocopherol than alpha-tocopherol/ascorbate. J Biol Chem 275:10812–10818

    Article  PubMed  CAS  Google Scholar 

  • Sagi M, Fluhr R (2001) Superoxide production by plant homologues of the gp91(phox) NADPH oxidase: modulation of activity by calcium and by tobacco mosaic virus infection. Plant Physiol 126:1281–1290

    Article  PubMed  CAS  Google Scholar 

  • Sagi M, Fluhr R (2006) Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol 141:336–340

    Article  PubMed  CAS  Google Scholar 

  • Takahama U, Oniki T (1992) Regulation of peroxidase-dependent oxidation of phenolics in the apoplast of spinach leaves by ascorbate. Plant Cell Physiol 33:279–387

    Google Scholar 

  • Tewari RK, Hahn EJ, Paek KY (2007) Function of nitric oxide and superoxide anion in the adventitious root development and antioxidant defence in Panax ginseng. Plant Cell Rep. doi:10.1007/s00299-007-0448-y

  • Uchida A, Jagendorf AT, Hibino T, Takabe T, Takabe T (2002) Effect of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci 163:515–523

    Article  CAS  Google Scholar 

  • Wang JW, Wu JY (2005) Nitric oxide is involved in methyl jasmonate-induced defense responses and secondary metabolism activities of Taxus cells. Plant Cell Physiol 46:923–930

    Article  PubMed  CAS  Google Scholar 

  • Wang JW, Zheng LP, Wu JY, Tan RX (2006) Involvement of nitric oxide in oxidative burst, phenylalanine ammonia-lyase activation and Taxol production induced by low-energy ultrasound in Taxus yunnanensis cell suspension cultures. Nitric Oxide 15:351–358

    Article  PubMed  CAS  Google Scholar 

  • William A, John G, Hendel J (1996) Reversed-phase high-performance liquid chromatographic determination of ginsenosides of Panax quinquefolium. J Chromatogr A 775:11–17

    Google Scholar 

  • Wink DA, Cook JA, Pacelli R, Liebmann J, Krishne MC, Mitchell JB (1995) Nitric oxide (NO) protects against cellular damage by reactive oxygen species. Toxicol Lett 82–83:221–226

    Article  PubMed  Google Scholar 

  • Wink DA, Mitchell JB (1998) Chemical biology of nitric oxide: insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic Biol Med 25:434–456

    Article  PubMed  CAS  Google Scholar 

  • Xu X Hu X, Neill SJ. Fang J, Cai W (2005) Fungal elicitor induces singlet oxygen generation, ethylene release and saponin synthesis in cultured cells of Panax ginseng C. A. Meyer. Plant Cell Physiol 46: 947–954

    Article  CAS  Google Scholar 

  • Yamasaki H, Shimoji H, Ohshiro Y, Sakihama Y (2001) Inhibitory effects of nitric oxide on oxidative phosphorylation in plant mitochondria. Nitric Oxide 5:261–270

    Article  PubMed  CAS  Google Scholar 

  • Yu KW, Gao WY, Hahn EJ, Paek KY (2002) Jasmonic acid improves ginsenoside accumulation in adventitious root culture of Panax ginseng C.A. Meyer. Biochem Eng J 11:211–215

    Article  CAS  Google Scholar 

  • Yu KW, Gao WY, Son SH, Paek KY (2000) Improvement of ginsenoside production by jasmonic acid and some other elicitors in hairy root culture of ginseng (Panax ginseng C.A. Meyer). In Vitro Cell Develop Biol Plant 36:424–428

    Article  CAS  Google Scholar 

  • Zhou B, Guo Z, Xing J, Huang B (2005) Nitric oxide is involved in abscisic acid-induced antioxidant activities in Stylosanthes guianensis. J Exp Bot 56:3223–3228

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This laboratory work is financially supported by the Ministry of Education and Human Resource Development (MOE), the Ministry of Commerce, Industry and Energy (MOCIE), Ministry of Labor (MOLAB) and the Korea Science and Engineering Foundation (KOSEF) grant funded by Korea government (MOST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kee Yoeup Paek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tewari, R.K., Lee, S.Y., Hahn, E.J. et al. Temporal changes in the growth, saponin content and antioxidant defense in the adventitious roots of Panax ginseng subjected to nitric oxide elicitation. Plant Biotechnol Rep 1, 227–235 (2007). https://doi.org/10.1007/s11816-007-0036-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-007-0036-1

Keywords

Navigation