Skip to main content
Log in

Effect of Biot number on unsteady reaction-diffusion phenomena and analytical solutions of coupled governing equations in porous particles with various shapes

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Analytical solutions of transient concentration profile inside particles were calculated by solving rection-diffusion equation in spherical, cylindrical, and slab-type porous particles, assuming first order irreversible reaction. Time-dependent concentration in bulk fluid phase was assumed as exponential decay for each particle, and convective boundary conditions were taken using arbitrary Biot number to obtain a general solution by eigenfunction expansion or Laplace transform method. Factors affecting average transient concentration inside particles were studied by adjusting Biot number, reaction time, and Thiele modulus as well as the position inside particles. To predict transient bulk concentration in batch photocatalytic reactor containing porous particles, coupled differential equations were solved by Laplace transform to obtain analytical solutions of bulk concentration as well as average concentration inside porous particles as a function of reaction time. The factors affecting transient concentrations were investigated by adjusting the concentration and porosity of the catalytic particles, morphology of the particles, and Thiele modulus in batch-mode reactor to study reduction speed of reactant concentration during photocatalytic reaction. The solutions from coupled differential equations were useful for the prediction of transient behavior in batch-type photocatalytic reactor and were compared with the results from CSTR containing slab-type photocatalytic particles with various space time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.-M. Tang and X.-L. Li, Korean J. Chem. Eng., 30(5), 1119 (2013).

    Article  CAS  Google Scholar 

  2. T. Murase, E. Iritani, J. H. Cho, S. Nakanomori and M. Shirato, J. Chem. Eng. Jpn., 20(3), 246 (1987).

    Article  CAS  Google Scholar 

  3. L. Cao, Q. Fu, Y. Si, B. Ding and J. Yu, Compos. Commun., 10, 25 (2018).

    Article  Google Scholar 

  4. P. Ruckdeschel, A. Philipp and M. Retsch, Adv. Func. Mater., 27(38), 1702256 (2017).

    Article  Google Scholar 

  5. S. T. Lim, J. H. Kim, C. Y. Lee, S. Koo, D.-W Jerng, S. Wongwises and H. S. Ahn, Sci. Rep., 9, 10922 (2019).

    Article  Google Scholar 

  6. M. Hong, L. Yu, Y. Wang, J. Zhang, Z. Chen, L. Dong, Q. Zan and R. Li, Chem. Eng. J., 359(1), 363 (2019).

    Article  CAS  Google Scholar 

  7. Y. Nie, P.M. Witt, A. Agarwal and L.T. Biegler, Ind. Eng. Chem. Res., 52(44), 15311 (2013).

    Article  CAS  Google Scholar 

  8. L. Erdei, N. Arecrachakul and S. Vigneswaran, Sep. Purif. Technol., 62, 382 (2008).

    Article  CAS  Google Scholar 

  9. C. Xing, Y. Liu, Y. Zhang, J. Liu, T. Zhang, P. Tang, J. Arbiol, de L. Soler, K. Sivula, N. Guijarro, X. Wang, J. Li, R. Du, Y. Zuo, A. Cabot and J. Llorca, J. Mater. Chem. A, 7, 17053 (2019).

    Article  CAS  Google Scholar 

  10. D. H. Kim and J. Lee Korean J. Chem. Eng., 29(1), 42 (2012).

    Article  CAS  Google Scholar 

  11. W Cho and J. Lee, Korean J. Chem. Eng., 30(3), 580 (2013).

    Article  CAS  Google Scholar 

  12. M. Garg and P. Manohar, Kuwait J. Sci., 40, 23 (2013).

    Google Scholar 

  13. A.N.F. Versypt, P.D. Arendt, D.W Pack and R.D. Braatz, Plos One, 10, e0135506 (2015).

    Article  Google Scholar 

  14. P. Li, G. Xiu and A. E. Rodrigue, Can. J. Chem. Eng., 97, 217 (2019).

    Article  CAS  Google Scholar 

  15. Y.-S. Cho, Korean Chem. Eng. Res., 57(5), 652 (2019).

    CAS  Google Scholar 

  16. Y.-S. Cho, C. H. Shin and S. Han, Nanoscale Res. Lett., 11, 46 (2016).

    Article  Google Scholar 

  17. Y.-S. Cho and S. H. Roh, J. Dispers. Sci. Tech., 39(1), 33 (2018).

    Article  CAS  Google Scholar 

  18. Y.-S. Cho, I.-A. Oh and N. R. Jung, J. Dispersion Sci. Technol., 37, 676 (2015).

    Article  Google Scholar 

  19. Y.-S. Cho, Korean J. Met. Mater., 55(4), 150 (2017).

    Google Scholar 

  20. H. S. Fogler, Elements of chemical reaction engineering, 5th Ed., Pearson Education, Inc. New York (2016).

    Google Scholar 

  21. T. Pan and B. Zhu, Chem. Eng. Sci., 53(5), 933 (1998)

    Article  CAS  Google Scholar 

  22. S. S. S. Cardoso and A. E. Rodrigues, AIChE J., 52(11), 3924 (2006).

    Article  CAS  Google Scholar 

  23. N. Milozic, M. Lubej, U. Novak, P. Znidarsic-Plazl and I. Plazl, Chem. Biochem. Eng. Q., 28(2), 125 (2014).

    Article  Google Scholar 

  24. G. Munjal, G. Dwivedi and N. Bhaskarwar, Int. Proc. Chem. Biol. Environ. Eng., 90, 82 (2015).

    CAS  Google Scholar 

  25. W. Li, R. Liang, A. Hu, Z. Huang and Y. Norman Zhou, RSC Adv., 4, 36959 (2014).

    Article  CAS  Google Scholar 

  26. R.G. Rice and D.D. Do, Applied mathematics and modeling for chemical engineers, 1st Ed., John Wiley & Sons, Inc. New York (1995).

    Google Scholar 

  27. K. Saito and H. Muso, Agree to partial differential equation, 1st Ed., Kodansha, Tokyo (2005).

    Google Scholar 

  28. L.K. Campbell, B.K. Na and E.I. Ko, Chem. Mater., 4(6), 1329 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Industrial Core Technology Development Program (10077545, Development of icephobic coating materials for extreme environment) funded by the Ministry of Trade, industry & Energy (MI, Korea), Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1A6A1 A03015562), and Information & communications Technology Promotion (IITP) grant funded by the Korea Government (MSIT) and Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOITIE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Sang Cho.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

11814_2020_625_MOESM1_ESM.pdf

Effect of Biot number on unsteady reaction-diffusion phenomena and analytical solutions of coupled governing equations in porous particles with various shapes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, YS., Sung, S. Effect of Biot number on unsteady reaction-diffusion phenomena and analytical solutions of coupled governing equations in porous particles with various shapes. Korean J. Chem. Eng. 37, 1836–1858 (2020). https://doi.org/10.1007/s11814-020-0625-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0625-z

Keywords

Navigation