Skip to main content

Numerical Investigation of Transport Processes in Porous Media Under Laminar, Transitional and Turbulent Flow Conditions with the Lattice-Boltzmann Method

  • Conference paper
  • First Online:
Computational Science – ICCS 2021 (ICCS 2021)

Abstract

In the present paper the mass transfer in porous media under laminar, transitional and turbulent flow conditions was investigated using the lattice-Boltzmann method (LBM). While previous studies have applied the LBM to species transport in complex geometries under laminar conditions, the main objective of this study was to demonstrate its applicability to turbulent internal flows including the transport of a scalar quantity. Thus, besides the resolved scalar transport, an additional turbulent diffusion coefficient was introduced to account for the subgrid-scale turbulent transport. A packed-bed of spheres and an adsorber geometry based on \(\mu \)CT scans were considered. While a two-relaxation time (TRT) model was applied to the laminar and transitional cases, the Bhatnagar-Gross-Krook (BGK) collision operator in conjunction with the Smagorinsky turbulence model was used for the turbulent flow regime. To validate the LBM results, simulations under the same conditions were carried out with ANSYS Fluent v19.2. It was found that the pressure drop over the height of the packed-bed were in close accordance to empirical correlations. Furthermore, the comparison of the calculated species concentrations for all flow regimes showed good agreement between the LBM and the results obtained with Ansys Fluent. Subsequently, the proposed extension of the Smagorinsky turbulence model seems to be able to predict the scalar transport under turbulent conditions.

We sincerely thank Markus Pieber for the PBG simulation and his assistance with the Fluent finite-volume simulations as well as Dr. Bernd Oberdorfer from Österreichisches Gießerei-Institut (ÖGI), Leoben (Austria), for the generation of the raw \(\mu \)CT scans. This work was financially supported by the Austrian Research Promotion Agency (FFG), ’Simulation der Wärmetransportvorgänge in Hochtemperaturprozessen und porösen Medien mittels lattice-Boltzmann Methode’ (project 872619, eCall 22609361).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bailey, P., Myre, J., Walsh, S., Lilja, D., Saar, M.: Accelerating lattice-boltzmann fluid flow simulations using graphics processors, pp. 550–557 (September 2009). https://doi.org/10.1109/ICPP.2009.38

  2. Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. i. small amplitude processes in charged and neutral one-component systems. Phys. Rev 94(3), 511–525 (1954). https://doi.org/10.1103/PhysRev.94.511

  3. Boltzmann, L.: Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen. In: Brush, S.G. (ed.) Kinetische Theorie II: Irreversible Prozesse Einführung und Originaltexte, pp. 115–225. WTB Wissenschaftliche Taschenbücher, Vieweg+Teubner Verlag, Wiesbaden (1970). https://doi.org/10.1007/978-3-322-84986-1_3

  4. Caulkin, R., Jia, X., Fairweather, M., Williams, R.: Predictions of porosity and fluid distribution through non spherical-packed columns. AIChE J. 58(5), 1503–1512 (2012). https://doi.org/10.1002/aic.12691

  5. Chapman, S., Cowling, T.G., Burnett, D.: The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  6. Dybbs, A., Edwards, R.V.: A new look at porous media fluid mechanics – Darcy to turbulent. In: Bear, J., Corapcioglu, M.Y. (eds.) Fundamentals of Transport Phenomena in Porous Media, pp. 199–256. NATO ASI Series, Springer, Dordrecht (1984). https://doi.org/10.1007/978-94-009-6175-3_4

  7. Flekkøy, E.G.: Lattice Bhatnagar-Gross-Krook models for miscible fluids. Phys. Rev. E 47(6), 4247–4257 (1993). https://doi.org/10.1103/PhysRevE.47.4247

    Article  Google Scholar 

  8. Freund, H., Bauer, J., Zeiser, T., Emig, G.: Detailed simulation of transport processes in fixed-beds. Ind. Eng. Chem. Res. 44(16), 6423–6434 (2005). https://doi.org/10.1021/ie0489453

    Article  Google Scholar 

  9. Geier, M., Sch, M.: The cumulant Lattice-Boltzmann equation in three dimensions: theory and validation. Comput. Math. Appl. 70(4), 507–547 (2015). https://doi.org/10.1016/j.camwa.2015.05.001

    Article  MathSciNet  MATH  Google Scholar 

  10. Ginzburg, I.: Generic boundary conditions for Lattice-Boltzmann models and their application to advection and anisotropic dispersion equations. Adv. Water Resour. 28(11), 1196–1216 (2005). https://doi.org/10.1016/j.advwatres.2005.03.009

    Article  Google Scholar 

  11. Ginzburg, I.: Two-relaxation-time Lattice-Boltzmann scheme: about parametrization, velocity, pressure and mixed boundary conditions. Commun. Comput. Phys. 3, 427–478 (2008)

    MathSciNet  Google Scholar 

  12. Gualtieri, C., Angeloudis, A., Bombardelli, F., Jha, S., Stoesser, T.: On the values for the turbulent Schmidt number in environmental flows. Fluids 2(2), 17 (2017). https://doi.org/10.3390/fluids2020017

    Article  Google Scholar 

  13. Guo, Z.L., Zheng, C.G., Shi, B.C.: Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the Lattice-Boltzmann method. Chin. Phys. 11(4), 366–374 (2002). https://doi.org/10.1088/1009-1963/11/4/310

    Article  Google Scholar 

  14. He, X., Luo, L.S.: Lattice-Boltzmann model for the incompressible Navier-Stokes equation. J. Stat. Phys. 88(3), 927–944 (1997). https://doi.org/10.1023/B:JOSS.0000015179.12689.e4

    Article  MathSciNet  MATH  Google Scholar 

  15. He, X., Zou, Q., Luo, L.S., Dembo, M.: Analytic solutions of simple flows and analysis of non-slip boundary conditions for the Lattice-Boltzmann BGK model. J. Stat. Phys. 87(1), 115–136 (1997). https://doi.org/10.1007/BF02181482

    Article  MATH  Google Scholar 

  16. Hou, S., Sterling, J., Chen, S., Doolen, D.G.: A Lattice-Boltzmann Subgrid model for high reynolds number flows. Fields Inst. Commun. 6, 151–166 (1994)

    Google Scholar 

  17. Jurtz, N., Kraume, M., Wehinger, G.D.: Advances in fixed-bed reactor modeling using particle-resolved computational fluid dynamics (CFD). Rev. Chem. Eng. 35(2), 139–190 (2019). https://doi.org/10.1515/revce-2017-0059

    Article  Google Scholar 

  18. Karlin, I.V., Gorban, A.N., Succi, S., Boffi, V.: Maximum entropy principle for lattice kinetic equations. Phys. Rev. Lett. 81(1), 6–9 (1998). https://doi.org/10.1103/PhysRevLett.81.6

    Article  Google Scholar 

  19. Kim, S., Pitsch, H.: A generalized periodic boundary condition for Lattice-Boltzmann method simulation of a pressure-driven flow in a periodic geometry. Phys. Fluids 19, 108101 (2007). https://doi.org/10.1063/1.2780194

  20. McNamara, G.R., Zanetti, G.: Use of the Boltzmann equation to simulate lattice-gas automata. Phys. Rev. Lett. 61(20), 2332–2335 (1988). https://doi.org/10.1103/PhysRevLett.61.2332

    Article  Google Scholar 

  21. Partopour, B., Dixon, A.G.: An integrated workflow for numerical generation and meshing of packed-beds of non-spherical particles: applications in chemical reaction engineering. iN: 2017 AIChE Annual Meeting (November 2017)

    Google Scholar 

  22. Qian, Y.H., D’Humières, D., Lallemand, P.: Lattice BGK models for Navier-Stokes equation. Europhys. Lett. (EPL) 17(6), 479–484 (1992). https://doi.org/10.1209/0295-5075/17/6/001

    Article  MATH  Google Scholar 

  23. Rhodes, M.: Introduction to Particle Technology, 2nd edn. Wiley, Chichester (April 2008)

    Google Scholar 

  24. Roberts, P.J.W., Webster, D.R.: Turbulent Diffusion. Environmental Fluid Mechanics: Theories and Applications, pp. 7–45 (2002). https://cedb.asce.org/CEDBsearch/record.jsp?dockey=0277542

  25. Uphoff, S.: Development and Validation of Turbulence Models for Lattice-Boltzmann Schemes. Ph.D. Thesis, Technische Universität Braunschweig (January 2013). https://publikationsserver.tu-braunschweig.de/receive/dbbs_mods_00055260

  26. Zeiser, T., et al.: Analysis of the flow field and pressure drop in fixed-bed reactors with the help of Lattice-Boltzmann simulations. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 360, 507–520 (2002). https://doi.org/10.1098/rsta.2001.0945

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Prieler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Flatscher, T., Prieler, R., Hochenauer, C. (2021). Numerical Investigation of Transport Processes in Porous Media Under Laminar, Transitional and Turbulent Flow Conditions with the Lattice-Boltzmann Method. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2021. ICCS 2021. Lecture Notes in Computer Science(), vol 12747. Springer, Cham. https://doi.org/10.1007/978-3-030-77980-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77980-1_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77979-5

  • Online ISBN: 978-3-030-77980-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics