Skip to main content
Log in

Investigation of hydromagnetic bioconvection flow of Oldroyd-B nanofluid past a porous stretching surface

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

This article focuses on the examination of various features of microorganism flow of Oldroyd-B nanofluid considering the effects of the magnetic field, porous medium, Joule heating, Brownian motion, mixed convection, thermal radiation, and thermophoresis. With the help of similarity transformations, the governing mathematical equations of the problem are reduced to the nonlinear ordinary differential equations. These equations are solved with the help of a MATLAB function named as bvp4c method. The most important outcomes of the study reveal that the rate of heat transport is boosting with the boosting values of Eckert and Prandtl number although the boosting values of thermophoresis and Brownian motion parameter cause to decline the Nusselt number. The Sherwood number is an increasing function of both thermophoresis and Schmidt number although it is declining with the boosting values of the solutal stratified parameters. Likewise, the transfer rate of microorganism is decreasing and increasing, respectively, with the boosting values of Peclet number, microorganisms’ concentration difference parameter, and bio-convection Schmidt number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

\({k}^{*}\)  :

Mean absorption constant

\({\sigma }^{*}\) :

Stefan-Boltzmann constant

\({U}_{w}\) :

Stretching velocity

\(u, v\) :

Components of velocity

\(a\) :

Rate of stretching

\({k}_{1}^{*}\) :

Permeability of porous medium

\({\rho }_{f}\) :

Density of nanofluids

\({B}_{0}\) :

Magnetic field intensity

\({\lambda }_{1}\) :

Relaxation time

\(\nu\) :

Kinematic viscosity

\({\lambda }_{2}\) :

Retardation time

\(k\) :

Thermal conductivity

\(\tau\) :

Heat capacity ratio

\(\sigma\) :

Electrical conductivity

\({b}_{1},{b}_{2}, {e}_{1},{e}_{2}, {d}_{1},{d}_{2}\) :

Dimensional constant

\({T}_{0}\) :

Reference temperature

\({C}_{0}\) :

Reference concentration of nanoparticles

\({n}_{0}\) :

Reference concentration of microorganisms

\({T}_{\infty }\) :

Ambient temperature

\({C}_{\infty }\) :

Ambient concentration of nanoparticles

\({n}_{\infty }\) :

Ambient concentration of microorganisms

\({T}_{w}\) :

Surface temperature

\({C}_{w}\) :

Surface concentration of nanoparticles

\({n}_{w}\) :

Surface concentration of microorganisms

\({S}_{1}\) :

Thermal stratified parameters

\({S}_{2}\) :

Solutal stratified parameters

\({S}_{3}\) :

Motile density stratified parameters

\({\beta }_{1}, {\beta }_{2}\) :

Deborah numbers

\({N}_{t}\) :

Thermophoresis parameter

\(\epsilon\) :

Porosity parameter

\(Pr\) :

Prandtl number

\(Sc\) :

Schmidt number

\(Rd\) :

Radiation parameter

\(M\) :

Hartmann number

\({N}_{b}\) :

Brownian motion parameter

\(Sb\) :

Bio-convection Schmidt number

\(S\) :

Suction parameter

\(Pe\) :

Peclet number

\(Ec\) :

Eckert number

\(\lambda\) :

Mixed convection parameter

\(N\) :

Buoyancy ratio parameter

\(\Omega\) :

Microorganism concentration difference parameter

\({R}_{b}\) :

Bioconvection Rayleigh number

References

  1. Masuda H, Ebata A, Teramae K, Hishinuma N (1993) Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of Al2O 3, SiO2 and TiO2 ultra-fine particles). Netsu Bussei 7:227–233

    Article  Google Scholar 

  2. Choi SUS, Eastman JA (1995) Enhancing thermal conductivity of fluids with nanoparticles, in: Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, USA, ASME, FED 231/MD 66: 99–105

  3. Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 78:718

    Article  Google Scholar 

  4. Buongiorno J (2006) Convective transport in nanofluids. ASME J Heat Transf 128:240–250

    Article  Google Scholar 

  5. Reddy YD, Rao VS, Kumar MA (2020) Effect of heat generation/absorption on MHD copper-water nanofluid flow over a non-linear stretching/shrinking sheet. In AIP Conference Proceedings (Vol. 2246, No. 1, p. 020017). AIP Publishing LLC

  6. Hazarika S, Ahmed S, Chamkha AJ (2021) Investigation of nanoparticles Cu, Ag and Fe3O4 on thermophoresis and viscous dissipation of MHD nanofluid over a stretching sheet in a porous regime: a numerical modeling. Math Comput Simul 182:819–837

    Article  MATH  Google Scholar 

  7. Sreedevi P, Sudarsana Reddy P, Chamkha A (2020) Heat and mass transfer analysis of unsteady hybrid nanofluid flow over a stretching sheet with thermal radiation. SN Appl Sci 2(7):1–15

    Article  Google Scholar 

  8. Reddy YD, Rao VS, Ramya D, Babu LA (2018) MHD boundary layer flow of nanofluid and heat transfer over a nonlinear stretching sheet with chemical reaction and suction/blowing. J Nanofluids 7(2):404–412

    Article  Google Scholar 

  9. Chamkha AJ, Dogonchi AS, Ganji DD (2019) Magneto-hydrodynamic flow and heat transfer of a hybrid nanofluid in a rotating system among two surfaces in the presence of thermal radiation and Joule heating. AIP Adv 9(2):025103

    Article  Google Scholar 

  10. Khan MR (2020) Numerical analysis of oblique stagnation point flow of nanofluid over a curved stretching/shrinking surface. Phys Scr 95(10):105704

    Article  Google Scholar 

  11. Krishna MV, Chamkha AJ (2019) Hall and ion slip effects on MHD rotating boundary layer flow of nanofluid past an infinite vertical plate embedded in a porous medium. Results Phys 15:102652

    Article  Google Scholar 

  12. Khan NS, Gul T, Islam S, Khan I, Alqahtani AM, Alshomrani AS (2017) Magnetohydrodynamic nanoliquid thin film sprayed on a stretching cylinder with heat transfer. Appl Sci 7(3):271

    Article  Google Scholar 

  13. Khan MR, Pan K, Khan AU, Ullah N (2020) Comparative study on heat transfer in CNTs-water nanofluid over a curved surface. Int Commun Heat Mass Transfer 116:104707

    Article  Google Scholar 

  14. Nadeem S, Khan AU (2019) MHD oblique stagnation point flow of nanofluid over an oscillatory stretching/shrinking sheet: existence of dual solutions. Phys Scr 94(7):075204

    Article  Google Scholar 

  15. Reddy PS, Chamkha AJ (2016) Soret and Dufour effects on MHD convective flow of Al2O3–water and TiO2–water nanofluids past a stretching sheet in porous media with heat generation/absorption. Adv Powder Technol 27(4):1207–1218

    Article  Google Scholar 

  16. Nadeem S, Khan MR, Khan AU (2019) MHD stagnation point flow of viscous nanofluid over a curved surface. Phys Scr 94(11):115207

    Article  Google Scholar 

  17. Li X, Khan AU, Khan MR, Nadeem S, Khan SU (2019) Oblique stagnation point flow of nanofluids over stretching/shrinking sheet with Cattaneo-Christov heat flux model: existence of dual solution. Symmetry 11(9):1070

    Article  Google Scholar 

  18. Khan MR, Pan K, Khan AU, Nadeem S (2020) Dual solutions for mixed convection flow of SiO2-Al2O3/water hybrid nanofluid near the stagnation point over a curved surface. Physica A 547:123959

    Article  MATH  Google Scholar 

  19. Nield DA, Kuznetsov AV (2006) The onset of bio-thermal convection in a suspension of gyrotactic microorganisms in a fluid layer: oscillatory convection. Int J Therm Sci 45:990–997

    Article  Google Scholar 

  20. Kuznetsov AV (2010) The onset of nanofluid bioconvection in a suspension containing both nanoparticles and gyrotactic microorganisms. Int Commun Heat Mass Transf 37:1421–1425

    Article  Google Scholar 

  21. Ahmad L, Irfan M, Javed S, Khan MI, Khan MR, Niazi UM, ... El-Zahar ER (2022) Influential study of novel microorganism and nanoparticles during heat and mass transport in Homann flow of visco-elastic materials. Int Commun Heat Mass Transf 131: 105871

  22. Khan NS, Gul T, Islam S, Khan W (2017) Thermophoresis and thermal radiation with heat and mass transfer in a magnetohydrodynamic thin-film second-grade fluid of variable properties past a stretching sheet. Eur Phys J Plus 132(1):1–20

    Article  Google Scholar 

  23. Yanala DR, Mella AK, Vempati SR, Goud BS (2021) Influence of slip condition on transient laminar flow over an infinite vertical plate with ramped temperature in the presence of chemical reaction and thermal radiation. Heat Transfer 50(8):7654–7671

    Article  Google Scholar 

  24. Qaiser D, Zheng Z, Khan MR (2020) Numerical assessment of mixed convection flow of Walters-B nanofluid over a stretching surface with Newtonian heating and mass transfer. Therm Sci Eng Prog 22:100801

    Article  Google Scholar 

  25. Zhou CJ, Abidi A, Shi QH, Khan MR, Rehman A, Issakhov A, Galal AM (2021) Unsteady radiative slip flow of MHD Casson fluid over a permeable stretched surface subject to a non-uniform heat source. Case Stud Therm Eng 26:101141

    Article  Google Scholar 

  26. He ZY, Khan MI, El-Zahar ER, Gouadria S, Khan MR, Mousa AAA (2022) Dynamics of mixed convection and Hall current in radiative power-law velocity slip flow of non-Newtonian fluid. Waves Random Complex Media 1–18

  27. Liu J, Abidi A, Khan MR, Rasheed S, Allehiany FM, Mahmoud EE, Galal AM (2021) Thermal analysis of a radiative slip flow of an unsteady Casson nanofluid toward a stretching surface subject to the convective condition. J Market Res 15:468–476

    Google Scholar 

  28. Khan MR, Al-Johani AS, Elsiddieg AM, Saeed T, Abd Allah AM (2022) The computational study of heat transfer and friction drag in an unsteady MHD radiated Casson fluid flow across a stretching/shrinking surface. Int Commun Heat Mass Transfer 130:105832

    Article  Google Scholar 

  29. Raza A, Ghaffari A, Khan SU, Haq AU, Khan MI, Khan MR (2022) Non-singular fractional computations for the radiative heat and mass transfer phenomenon subject to mixed convection and slip boundary effects. Chaos Solitons Fractals 155:111708

    Article  MathSciNet  MATH  Google Scholar 

  30. Elkotb MA, Hamid A, Khan MR, Khan MN, Galal AM (2021) Thermal radiation and chemically reactive aspects of mixed convection flow using water base nanofluids: Tiwari and Das model. Waves Random Complex Media 1–31. https://doi.org/10.1080/17455030.2021.2015082

  31. Reddy YD, Goud BS, Khan MR, Elkotb MA, Galal AM (2022) Transport properties of a hydromagnetic radiative stagnation point flow of a nanofluid across a stretching surface. Case Stud Therm Eng 31:101839

    Article  Google Scholar 

  32. Crane LJ (1970). Flow past a stretching plate. Zeitschrift für angewandte Mathematik und Physik ZAMP, 21(4), 645–647.

  33. Reddy YD, Ramya D, Babu LA (2016) Effect of thermal radiation on MHD boundary layer flow of nanofluid and heat transfer over a non-linearly stretching sheet with transpiration. J Nanofluids 5(6):889–897

    Article  Google Scholar 

  34. Rasool G et al (2019) Entropy generation and consequences of binary chemical reaction on MHD Darcy-Forchheimer Williamson nanofluid flow over non-linearly stretching surface. Entropy 22(1):18

    Article  MathSciNet  Google Scholar 

  35. Venkata Ramana K, Gangadhar K, Kannan T, Chamkha AJ (2022) Cattaneo-Christov heat flux theory on transverse MHD Oldroyd-B liquid over nonlinear stretched flow. J Therm Anal Calorim 147(3):2749–2759

    Article  Google Scholar 

  36. Zhao T, Khan MR, Chu Y, Issakhov A, Ali R, Khan S (2021). Entropy generation approach with heat and mass transfer in magnetohydrodynamic stagnation point flow of a tangent hyperbolic nanofluid. Appl Math and Mech 42(8), 1205–1218.

  37. Huang WH, Abidi A, Khan MR, Jing D, Mahmoud EE, Allehiany FM, Galal AM (2021) Numerical study of heat transfer and friction drag in MHD viscous flow of a nanofluid subject to the curved surface. Waves Random Complex Media 1–16

  38. Khan SA, Khan MI, Khan MR, Alotaibi F, Galal AM (2021) Transportation of Darcy–Forchheimer entropy optimized nonlinear flow toward a stretchable sheet with Ohmic heating and heat generation/absorption. Waves Random Complex Media 1–19

  39. Ali R, Khan MR, Abidi A, Rasheed S, Galal AM (2021) Application of PEST and PEHF in magneto-Williamson nanofluid depending on the suction/injection. Case Stud Therm Eng 27:101329

    Article  Google Scholar 

  40. Zhang XH, Abidi A, Ahmed AES, Khan MR, El-Shorbagy MA, Shutaywi M, Galal AM (2021) MHD stagnation point flow of nanofluid over curved stretching/shrinking surface subject to the influence of Joule heating and convective condition. Case Stud Therm Eng 26:101184

    Article  Google Scholar 

  41. Khan MR, Li M, Mao S, Ali R, Khan S (2021) Comparative study on heat transfer and friction drag in the flow of various hybrid nanofluids effected by aligned magnetic field and nonlinear radiation. Sci Rep 11(1):1–14

    Google Scholar 

  42. Li YX, Alshbool MH, Khan MR, Khan I, Lv YP, Issakhov A (2021) Heat and mass transfer in MHD Williamson nanofluid flow over an exponentially porous stretching surface. Case Stud Therm Eng 26:100975

    Article  Google Scholar 

  43. Khan NS, Islam S, Gul T, Khan I, Khan W, Ali L (2018) Thin film flow of a second grade fluid in a porous medium past a stretching sheet with heat transfer. Alex Eng J 57(2):1019–1031

    Article  Google Scholar 

  44. Khan MR, Elkotb MA, Matoog RT, Alshehri NA, Abdelmohimen MA (2021) Thermal features and heat transfer enhancement of a casson fluid across a porous stretching/shrinking sheet: analysis of dual solutions. Case Stud Therm Eng 101594

  45. Alshehri NA, Abidi A, Khan MR, Reddy YD, Rasheed S, Alali E, Galal AM (2021) Unsteady convective MHD flow and heat transfer of a viscous nanofluid across a porous stretching/shrinking surface: existence of multiple solutions. Curr Comput-Aided Drug Des 11(11):1359

    Google Scholar 

  46. Khan MR, Mao S, Deebani W, Elsiddieg AM (2022) Numerical analysis of heat transfer and friction drag relating to the effect of Joule heating, viscous dissipation and heat generation/absorption in aligned MHD slip flow of a nanofluid. Int Commun Heat Mass Transfer 131:105843

    Article  Google Scholar 

  47. Zheng L, Liu Y, Zhang X (2011) Exact solutions for MHD flow of generalized Oldroyd-B fluid due to an infinite accelerating plate. Math Comput Model 54(1–2):780–788

    Article  MathSciNet  MATH  Google Scholar 

  48. Waqas M, Hayat T, Shehzad SA, Alsaedi A (2018) Transport of magnetohydrodynamic nanomaterial in a stratified medium considering gyrotactic microorganisms. Physica B 529:33–40

    Article  Google Scholar 

  49. Elanchezhian E, Nirmalkumar R, Balamurugan M, Mohana K, Prabu KM, Viloria A (2020). Heat and mass transmission of an Oldroyd-B nanofluid flow through a stratified medium with swimming of motile gyrotactic microorganisms and nanoparticles. Journal of Thermal Analysis and Calorimetry, 141(6), 2613–2623.

  50. Khan MR, Saleel CA, Saeed T, Allehiany FM, El-Refaey AM, Jing D, Mahmoud EE (2021). A study of a computational BVP for heat transfer and friction drag in magnetohydrodynamics viscous flow of a nanofluid subject to the curved surface. Proc Inst Mech Eng E J Process Mech Eng 09544089211046422.

  51. Abel MS, Tawade JV, Nandeppanavar MM (2012) MHD flow and heat transfer for the upper-convected Maxwell fluid over a stretching sheet. Meccanica 47:385–393

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This study is supported by the Deanship of Scientific Research at Umm Al-Qura University by Grant Code: 22UQU4310392DSR07 and the Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2022R163), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

M. Riaz Khan generated the research idea, stated the problem, and wrote the codes to perform the numerical calculations and plot the graphical results. Model modification, result verification, and validation were performed by Khalid Abdulkhaliq M Alharbi and Maawiya Ould Sidi. The first draft of the manuscript was written by M. Riaz Khan, whereas the revised draft was written by A.M. Algelany and Samia Elattar. N. Ameer Ahammad commented on the manuscript and reviewed the revised version. All authors contributed to the final version of the manuscript.

Corresponding author

Correspondence to M. Riaz Khan.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alharbi, K., Khan, M.R., Ould Sidi, M. et al. Investigation of hydromagnetic bioconvection flow of Oldroyd-B nanofluid past a porous stretching surface. Biomass Conv. Bioref. 13, 4331–4342 (2023). https://doi.org/10.1007/s13399-022-02785-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02785-7

Keywords

Navigation