Skip to main content
Log in

Effect of ageing process on microstructure, corrosion behaviors and mechanical properties of Al-5.6Zn-1.6Mg-0.05Zr alloy

时效工艺对 Al-5.6Zn-1.6Mg-0.05Zr 合金微观组织、 腐蚀行为及力学性能的影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The influence of different ageing processes on the microstructure, corrosion behaviors and mechanical properties of extruded Al−5.6Zn−1.6Mg−0.05Zr (wt.%) alloy was studied in this work. The changes of morphology, size and distribution of MgZn2 precipitate with ageing temperature and time were revealed by optical and electron microscopy. Intergranular corrosion (IGC) and exfoliation corrosion (EXCO) tests were carried out to assess the changes in corrosion susceptibility of the tempered alloy, and some white spots on the surface of the sample aged for longer time were found to be precursors of pits. Electrochemical cyclic polarization test depicted the corrosion behavior under different tempers. Ageing influences on the mechanical behaviors of the alloy were revealed by evaluating its microhardness and tensile strength. The microscopic features of the strengthening phases determined by the ageing procedure directly affect the corrosion resistance and mechanical properties of the alloy.

摘要

本文研究了不同时效工艺对挤压态Al−5.6Zn−1.6Mg−0.05Zr(wt.%)合金的显微组织、 腐蚀行为和力学性能的影响. 采用光学和电子显微镜揭示了MgZn2析出相的形貌、 尺寸及分布随时效温度和时间的变化规律. 通过晶间腐蚀(IGC)和剥落腐蚀(EXCO)试验分析了时效后合金的腐蚀敏感性变化情况, 发现在经过较长时间时效后的试样表面出现的白点是发生点蚀的前兆; 同时采用循环极化测试表征了不同时效态合金的电化学腐蚀行为. 此外, 测试并分析了经过不同时效工艺处理后试样的显微硬度和拉伸强度. 时效过程中所形成的强化相微观特征直接决定了合金的耐腐蚀性和力学性能.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. HE Hong, WU Xiao-dong, SUN Chao-rong, et al. Grain structure and precipitate variations in 7003-T6 aluminum alloys associated with high strain rate deformation [J]. Materials Science and Engineering A, 2019, 745(4): 429–439. DOI: https://doi.org/10.1016/j.msea.2019.01.003.

    Article  Google Scholar 

  2. CHOI Y, KIM D U, KANG B Y, et al. Forming of the precision aluminum tube for a light weight propeller shaft [J]. Journal of Mechanical Science and Technology, 2013, 27(11): 3445–3449. DOI: https://doi.org/10.1007/s12206-013-0868-2

    Article  Google Scholar 

  3. JO H H, CHO H, LEE K W, et al. Extrudability improvement and energy consumption estimation in Al extrusion process of a 7003 alloy [J]. Journal of Materials Processing Technology, 2002, 130–31: 407–410. DOI: https://doi.org/10.1016/S0924-0136(02)00723-9

    Article  Google Scholar 

  4. JIANG Ju-fu, ATKINSON H V, WANG Ying. Microstructure and mechanical properties of 7005 aluminum alloy components formed by thixoforming [J]. Journal of Materials Science and Technology, 2017, 33(4): 379–388. DOI:https://doi.org/10.1016/j.jmst.2016.07.014.

    Article  Google Scholar 

  5. WANG Chong-qing, WANG Hui, GU Guo-hua, et al. Kinetics and leaching behaviors of aluminum from pharmaceutical blisters in sodium hydroxide solution [J]. Journal of Central South University, 2015, 22: 4545–4550. DOI: https://doi.org/10.1007/s11771-015-3004-x.

    Article  Google Scholar 

  6. DÍAZ-BALLOTE L, LÓPEZ-SANSORES J F, MALDONADO-LÓPEZ L, et al. Corrosion behavior of aluminum exposed to a biodiesel [J]. Electrochemistry Communications, 2009, 11(1): 41–44. DOI: https://doi.org/10.1016/j.elecom.2008.10.027

    Article  Google Scholar 

  7. ZHANG Jin-liang, YE Jie-liang, SONG Bo, et al. Comparative study on microstructure and electrochemical corrosion resistance of Al7075 alloy prepared by laser additive manufacturing and forging technology [J]. Journal of Central South University, 2021, 28(4): 1058–1067. DOI: https://doi.org/10.1007/s11771-021-4679-9.

    Article  Google Scholar 

  8. ZHANG Fa-zhi, ZHAO Li-li, CHEN Hong-yun, et al. Corrosion resistance of superhydrophobic layered double hydroxide films on aluminum [J]. Angewandte Chemie International Edition, 2015, 47(13): 2466–2469. DOI: https://doi.org/10.1002/anie.200704694.

    Article  Google Scholar 

  9. SZKLARSKA-SMIALOWSKA Z. Pitting corrosion of aluminum [J]. Corrosion Science, 1999, 41(9): 1743–1767. DOI: https://doi.org/10.1016/S0010-938X(99)00012-8.

    Article  Google Scholar 

  10. LI Ni, DONG Chao-fang, MAN Cheng, et al. Insight into the localized strain effect on micro-galvanic corrosion behavior in AA7075-T6 aluminum alloy [J]. Corrosion Science, 2020, 180: 109174. DOI: https://doi.org/10.1016/j.corsci.2020.109174.

    Article  Google Scholar 

  11. ACOSTA G, VELEVA L, LÓPEZ J L, et al. Contrasting initial events of localized corrosion on surfaces of 2219-T42 and 6061-T6 aluminum alloys exposed in Caribbean seawater [J]. Transactions of Nonferrous Metals Society of China, 2019, 29: 34–42. DOI: https://doi.org/10.1016/S1003-6326(18)64912-X.

    Article  Google Scholar 

  12. JIANG Da-ming, LIU Yuan, LIANG Shuai, et al. The effects of non-isothermal aging on the strength and corrosion behavior of Al−Zn−Mg−Cu alloy [J]. Journal of Alloys and Compounds, 2016, 681(5): 57–65. DOI: https://doi.org/10.1016/j.jallcom.2016.04.208.

    Article  Google Scholar 

  13. ROUT P K, GHOSH M M, GHOSH K S. Influence of aging treatments on alterations of microstructural features and stress corrosion cracking behavior of an Al−Zn−Mg alloy [J]. Journal of Materials Engineering and Performance, 2015, 24(7): 2792–2805. DOI: https://doi.org/10.1007/s11665-015-1559-1.

    Article  Google Scholar 

  14. PENG Xiao-yan, GUO Qi, LIANG Xiao-peng, et al. Mechanical properties, corrosion behavior and microstructures of a non-isothermal ageing treated Al−Zn−Mg−Cu alloy [J]. Materials Science and Engineering A, 2017, 688(14): 146–154. DOI: https://doi.org/10.1016/j.msea.2017.01.086.

    Article  Google Scholar 

  15. CHEN S, CHEN K, DONG P, et al. Effect of recrystallization and heat treatment on strength and SCC of an Al−Zn−Mg−Cu alloy [J]. Journal of Alloys and Compounds, 2013, 581(25): 705–709. DOI: https://doi.org/10.1016/j.jallcom.2013.07.177.

    Article  Google Scholar 

  16. WU L M, WANG W H, HSU Y F, et al. Effects of microstructure on the mechanical properties and stress corrosion cracking of an Al−Zn−Mg−Sc−Zr alloy by various temper treatments [J]. Materials Transactions, 2007, 48(3): 600–609. DOI: https://doi.org/10.2320/matertrans.48.600.

    Article  Google Scholar 

  17. PENG Guo-sheng, CHEN Kang-hua, CHEN Song-yi, et al. Influence of repetitious-RRA treatment on the strength and SCC resistance of Al−Zn−Mg−Cu alloy [J]. Materials Science and Engineering A, 2011, 528(12): 4014–4018. DOI: https://doi.org/10.1016/j.msea.2011.01.088.

    Article  Google Scholar 

  18. WANG W, PAN Q, WANG X, et al. Non-isothermal aging: A heat treatment method that simultaneously improves the mechanical properties and corrosion resistance of ultra-high strength Al−Zn−Mg−Cu alloy [J]. Journal of Alloys and Compounds, 2020, 845(10): 156286. DOI: https://doi.org/10.1016/j.jallcom.2020.156286.

    Article  Google Scholar 

  19. LIN Y C, JIANG Y Q, ZHANG X C, et al. Effect of creep-aging processing on corrosion resistance of an Al−Zn−Mg−Cu alloy [J]. Materials and Design, 2014, 61: 228–238. DOI:https://doi.org/10.1016/j.matdes.2014.04.054.

    Article  Google Scholar 

  20. WEI Shi-long, FENG Yan, ZHANG Hui, et al. Influence of aging on microstructure, mechanical properties and stress corrosion cracking of 7136 aluminum alloy [J]. Journal of Central South University, 2021, 28(9): 2687–2700. DOI: https://doi.org/10.1007/s11771-021-4802-y.

    Article  Google Scholar 

  21. SU Rui-ming, QU Ying-dong, LI Rong-de, et al. Effect of aging treatments on microstructure and exfoliation corrosion behavior of spray forming 7075 alloy [J]. Advanced Materials Research, 2013, 774–776: 872–875. DOI: https://doi.org/10.4028/www.scientific.net/AMR.774-776.872.

    Article  Google Scholar 

  22. DIXIT M, MISHRA R S, SANKARAN K K. Structure-property correlations in Al 7050 and Al 7055 high-strength aluminum alloys [J]. Materials Science and Engineering A, 2008, 478(1, 2): 163–172. DOI: https://doi.org/10.1016/j.msea.2007.05.116.

    Article  Google Scholar 

  23. CHEN Song-yi, CHEN Kang-hua, PENG Guo-sheng, et al. Effect of heat treatment on strength, exfoliation corrosion and electrochemical behavior of 7085 aluminum alloy [J]. Materials and Design, 2012, 35: 93–98. DOI: https://doi.org/10.1016/j.matdes.2011.09.033.

    Article  Google Scholar 

  24. ÖZER G, KARAASLAN A. Effect of RRA heat treatment on corrosion and mechanical properties of AA7075 [J]. Materials and Corrosion, 2019, 70(11): 1–9. DOI: https://doi.org/10.1002/maco.201910955.

    Google Scholar 

  25. MARLAUD T, DESCHAMPS A, BLEY F, et al. Evolution of precipitate microstructures during the retrogression and re-ageing heat treatment of an Al−Zn−Mg−Cu alloy [J]. Acta Materialia, 2010, 58(14): 4814–4826. DOI: https://doi.org/10.1016/j.actamat.2010.05.017.

    Article  Google Scholar 

  26. LI J F, BIRBILIS N, LI C X, et al. Influence of retrogression temperature and time on the mechanical properties and exfoliation corrosion behavior of aluminium alloy AA7150 [J]. Materials Characterization, 2009, 60(11): 1334–1341. DOI: https://doi.org/10.1016/j.matchar.2009.06.007.

    Article  Google Scholar 

  27. XIE Peng, CHEN Song-yi, CHEN Kang-hua, et al. Enhancing the stress corrosion cracking resistance of a low-Cu containing Al−Zn−Mg−Cu aluminum alloy by step-quench and aging heat treatment [J]. Corrosion Science, 2019, 161: 108184. DOI: https://doi.org/10.1016/j.corsci.2019.108184.

    Article  Google Scholar 

  28. SONG R G, DIETZEL W, ZHANG B J, et al. Stress corrosion cracking and hydrogen embrittlement of an Al−Zn−Mg−Cu alloy [J]. Acta Materialia, 2004, 52(16): 4727–4743. DOI: https://doi.org/10.1016/j.actamat.2004.06.023.

    Article  Google Scholar 

  29. XIAO Tao, DENG Yun-lai, YE Ling-ying, et al. Effect of three-stage homogenization on mechanical properties and stress corrosion cracking of Al−Zn−Mg−Zr alloys [J]. Materials Science and Engineering A, 2016, 675: 280–288. DOI: https://doi.org/10.1016/j.msea.2016.08.071.

    Article  Google Scholar 

  30. MILAGRE M X, DONATUS U, MACHADO C S C, et al. Exfoliation corrosion susceptibility in the zones of friction stir welded AA2098-T351 [J]. Journal of Materials Research and Technology, 2019, 8(6): 5916–5929. DOI: https://doi.org/10.1016/j.jmrt.2019.09.066.

    Article  Google Scholar 

  31. ZHAO Xin-yan, FRANKEL G S. Quantitative study of exfoliation corrosion: Exfoliation of slices in humidity technique [J]. Corrosion Science, 2007, 49(2): 920–938. DOI: https://doi.org/10.1016/j.corsci.2006.05.037.

    Article  Google Scholar 

  32. KARAYAN A I, JATA K, VELEZ M, et al. On exfoliation corrosion of alloy 2060 T8E30 in an aggressive acid environment [J]. Journal of Alloys and Compounds, 2016, 657(5): 546–558. DOI: https://doi.org/10.1016/j.jallcom.2015.10.082.

    Article  Google Scholar 

  33. ZHANG Xin-xin, ZHOU Xiao-rong, HASHIMOTO T, et al. Localized corrosion in AA2024-T351 aluminium alloy: Transition from intergranular corrosion to crystallographic pitting [J]. Materials Characterization, 2017, 130: 230–236. DOI: https://doi.org/10.1016/j.matchar.2017.06.022.

    Article  Google Scholar 

  34. ROUT P K, GHOSH M M, GHOSH K S. Microstructural, mechanical and electrochemical behaviour of a 7017 Al−Zn−Mg alloy of different tempers [J]. Materials Characterization, 2015, 104: 49–60. DOI: https://doi.org/10.1016/j.matchar.2015.03.025.

    Article  Google Scholar 

  35. XU Xue-song, ZHENG Jing-xu, Li Zhi, et al. Precipitation in an Al−Zn−Mg−Cu alloy during isothermal aging: Atomic-scale HAADF-STEM investigation [J]. Materials Science and Engineering A, 2017, 691(13): 60–70. DOI: https://doi.org/10.1016/j.msea.2017.03.032.

    Article  Google Scholar 

  36. ROJAS I J, CRESPO D. Dynamic microstructural evolution of an Al−Zn−Mg−Cu alloy (7075) during continuous heating and the influence on the viscoelastic response [J]. Materials Characterization, 2017, 134: 319–328. DOI: https://doi.org/10.1016/j.matchar.2017.11.018.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SHAO Hong-bang proposed the concept and wrote the initial draft. HUANG Yuan-chun conducted the literature review and edited the revised manuscript. WANG Yan-ling analyzed the measured data.

Corresponding author

Correspondence to Yuan-chun Huang  (黄元春).

Ethics declarations

SHAO Hong-bang, HUANG Yuan-chun, and WANG Yan-ling declare that they have no conflict of interest.

Additional information

Foundation item: Project(2021zzts0152) supported by the Fundamental Research Funds for the Central Universities, China; Project (U1837207) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, Hb., Huang, Yc. & Wang, Yl. Effect of ageing process on microstructure, corrosion behaviors and mechanical properties of Al-5.6Zn-1.6Mg-0.05Zr alloy. J. Cent. South Univ. 29, 1029–1040 (2022). https://doi.org/10.1007/s11771-022-4953-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-4953-5

Key words

关键词

Navigation