Skip to main content
Log in

Lower Efficacy in the Utilization of Dietary ALA as Compared to Preformed EPA + DHA on Long Chain n-3 PUFA Levels in Rats

  • Original Article
  • Published:
Lipids

Abstract

We made a comparative analysis of the uptake, tissue deposition and conversion of dietary α-linolenic acid (ALA) to its long chain metabolites eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) with preformed EPA + DHA. Diets containing linseed oil [with ALA at ~2.5 (4 g/kg diet), 5 (8 g/kg diet), 10 (16 g/kg diet), 25% (40 g/kg diet)] or fish oil [with EPA + DHA at ~1 (1.65 g/kg diet), 2.5 (4.12 g/kg diet), 5% (8.25 g/kg diet)] or groundnut oil without n-3 polyunsaturated fatty acids (n-3 PUFA) were fed to rats for 60 days. ALA and EPA + DHA in serum, liver, heart and brain increased with increments in the dietary ALA level. When preformed EPA + DHA were fed, the tissue EPA + DHA increased significantly compared to those given ALA. Normalized values from dietary n-3 PUFA to tissue EPA + DHA indicated that 100 mg of dietary ALA lead to accumulation of EPA + DHA at 2.04, 0.70, 1.91 and 1.64% of total fatty acids respectively in liver, heart, brain and serum. Similarly 100 mg of preformed dietary EPA + DHA resulted in 25.4, 23.8, 15.9 and 14.9% of total fatty acids in liver, heart, brain and serum respectively. To maintain a given level of EPA + DHA, the dietary ALA required is 12.5, 33.5, 8.3 and 9.1 times higher than the dietary EPA + DHA for liver, heart, brain and serum respectively. Hence the efficacy of precursor ALA is lower compared to preformed EPA + DHA in elevating serum and tissue long chain n-3 PUFA levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ALA:

α-Linolenic acid (18:3 n-3)

ANOVA:

Analysis of variance

ARA:

Arachidonic acid (20:4 n-6)

DHA:

Docosahexaenoic acid (22:6 n-3)

DPA:

Docosapentaenoic acid (22:5 n-3)

EPA:

Eicosapentaenoic acid (20:5 n-3)

FO:

Fish oil

GNO:

Groundnut oil (peanut oil)

HDL:

High density lipoprotein

LDL:

Low density lipoprotein

LNA:

Linoleic acid (18:2 n-6)

LSO:

Linseed oil

ND:

Not detected

PUFA:

Polyunsaturated fatty acid (s)

SD:

Standard deviation

SFA:

Saturated fatty acid

References

  1. Graham CB, Philip CC (2005) Conversion of α-linolenic acid to longer-chain polyunsaturated fatty acids in human adult. Reprod Nutr Dev 45:581–597

    Article  Google Scholar 

  2. Davis BC, Kris-Etherton (2003) Achieving optimal essential fatty acid status in vegetarians: current knowledge and practical implications. Am J Clin Nutr 78(suppl):640S–646S

  3. Li D, Sinclair AJ, Wilson A, Nakkote S, Kelly F, Abedin L, Mann NJ, Turner AJ (1999) Effects of dietary alpha linolenic acid on thrombotic risk factors in vegetarian men. Am J Clin Nutr 69:872–882

    CAS  PubMed  Google Scholar 

  4. Bazinet RP, Douglas H, Cunnane SC (2003) Whole body utilization of n-3 PUFA deficient rats. Lipids 38:187–189

    Article  CAS  PubMed  Google Scholar 

  5. Mantzioris E, James MJ, Gibson RA, Cleland LG (1995) Differences exist in the relationship between dietary linoleic and alpha linolenic acids and their respective long chain metabolites. Am J Clin Nutr 61:320–324

    CAS  PubMed  Google Scholar 

  6. Lauritzen L, Hansen HS (2003) Which of the n-3 fatty acids should be called essential? Lipids 38:889–891

    Article  CAS  PubMed  Google Scholar 

  7. Anonymous (1977) Report on the American institute of nutrition, Ad-hoc committee on standards for nutritional studies. J Nutr 107:1340–1348

    Google Scholar 

  8. Folch J, Lee M, Sloane SGH (1957) A simple method for isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  9. Searcy RL, Bergquist LM (1960) A new color reaction for the quantification of cholesterol. Clin Chim Acta 5:192–199

    Article  CAS  PubMed  Google Scholar 

  10. Warnick GR, Albers JJ (1978) A comprehensive evaluation of the heparin-manganese chloride precipitation procedure for estimating HDL-cholesterol. J Lipid Res 19:65–76

    CAS  PubMed  Google Scholar 

  11. Stewart JCM (1980) Colorimetric estimation of phospholipids with ammonium ferrothiocyanate. Anal Biochem 104:10–14

    Article  CAS  PubMed  Google Scholar 

  12. Fletcher MJ (1968) A colorimetric method for estimating serum triacylglycerol. Clin Chim Acta 22:303–307

    Article  Google Scholar 

  13. Morrison MR, Smith M (1963) Preparation of fatty acid methyl esters and dimethylacetyls from lipids with boron fluoride methanol. J Lipids Res 5:600–608

    Google Scholar 

  14. Fisher RA (1970) Statistical methods for researcher workers, 14th edn. Oliver and Boya, Edinburg

    Google Scholar 

  15. Ballihaut CP, Lengelier B, Houlier F, Alessandril JM, Durand G, Latge C, Guesnet P (2001) Comparative bioavailability of dietary alpha-linolenic and docosahexaenoic acids in the growing rat. Lipids 36:793–800

    Article  Google Scholar 

  16. Valenzuela A, Bernhardi R, Valenzuela V, Ramirez G, Alarcon R, Sanhueza J, Nieto S (2004) Supplementation of female rats with alpha-linolenic acid or docosahexaenoic acid leads to the same omega-6/omega-3 LC-PUFA accretion in mother tissues and in fetal and newborn brains. Ann Nutr Metab 48:28–35

    Article  CAS  PubMed  Google Scholar 

  17. Bazinet RP, McMillan EG, Cunnane SC (2003) Dietary alpha-linolenic acid increases the n-3 PUFA content of sow’s milk and tissues of the suckling piglet. Lipids 38:1045–1049

    Article  CAS  PubMed  Google Scholar 

  18. Burdge GC, Jones AE, Wootton SA (2002) Eicosapentaenoic acid and docosahexaenoic acids are the principal products of alpha linolenic acid metabolism in young men. Br J Nutr 88:355–363

    Article  CAS  PubMed  Google Scholar 

  19. Leyton J, Drury P, Crawford M (1987) Differential oxidation of saturated and monounsaturated fatty acids in vivo in rat. Br J Nutr 57:383–393

    Article  CAS  PubMed  Google Scholar 

  20. Cunnane SC, Anderson MJ (1997) The majority of dietary linolenate in growing rats is beta-oxidized or stored in visceral fat. J Nutr 127:146–152

    CAS  PubMed  Google Scholar 

  21. Bazinet RP, MacMillan EG, Seebaransing R, Hayes AM, Cunnane HC (2003) Whole-body beta oxidation of 18:2 w-2 and 18:3 w-3 in the pig varies markedly with weaning strategies and dietary 18:3 w3. J Lipid Res 44:314–319

    Article  CAS  PubMed  Google Scholar 

  22. MacDonald-Wicks LK, Gard ML (2004) Incorporation of n-3 fatty acids into plasma and liver lipids of rats: importance of background dietary fat. Lipids 39:545–551

    Article  CAS  PubMed  Google Scholar 

  23. Fu Z, Sinclair AJ (2000) Increased alpha-linolenic acid intake increases the tissue alpha-linolenic acid content and apparent oxidation with little effect on tissue docosahexaenoic acid in the guinea pig. Lipids 35:395–400

    Article  CAS  PubMed  Google Scholar 

  24. Pawlosky RJ, Hibbelin JR, Novotny JA, Salem J Jr (2001) Physiological compartmental analysis of alpha-linolenic acid metabolism in adult humans. J Lipid Res 42:1257–1265

    CAS  PubMed  Google Scholar 

  25. Sinclair AJ, Crawford MA (1972) The incorporation of linolenic acid and docosahexaenoic acid into liver and brain lipids of developing rats. FEBS Lett 26:127–129

    Article  CAS  PubMed  Google Scholar 

  26. Cunnane SC, Ryan MA, Nadeau CR, Bazinet RP, Velso KM, McCloy U (2003) Why is carbon from some polyunsaturates extensively recycled into lipid synthesis? Lipids 38:477–484

    Article  CAS  PubMed  Google Scholar 

  27. Christiansen EN, Lund JS, Rortveit T, Rustan AC (1991) Effect of dietary n-3 and n-6 fatty acids on fatty acid desaturation in rat liver. Biochim Biophys Acta 1082:57–62

    CAS  PubMed  Google Scholar 

  28. Emken EA, Adolf RO, Duval SM, Nelson GJ (1999) Effect of dietary docosahexaenoic acid on desaturation and uptake in vivo of isotope labeled oleic, linoleic and linolenic acids by male subjects. Lipids 34:785–791

    Article  CAS  PubMed  Google Scholar 

  29. Emken EA, Adlot RO, Gulley RM (1994) Dietary linoleic acid influences desaturation, elongation and acylation of deuterium labeled linoleic and linolenic acid in young adult males. Biochim Biophy Acta 1213:277–288

    CAS  Google Scholar 

  30. Croset M, Black JM, Sawnson JE, Kinsella JE (1989) Effects of dietary n-3 PUFA on phospholipids compositions and calcium transport in mouse cardiac sarcoplasmic reticulum. Lipids 24:278–285

    Article  CAS  PubMed  Google Scholar 

  31. Connor WE, Neuringer M (1988) The effects of n-3 FA deficiency and repletion upon the FA composition and function of the brain and retina. Prog Clin Biol Res 282:275–294

    CAS  PubMed  Google Scholar 

  32. Greiner RS, Moriguchi T, Hutton A, Slotnick BM, Salem N Jr (1999) Rats with low levels of brain docosahexaenoic acid show impaired performance in olfactory based and spatial learning task. Lipids 34:S239–S243

    Article  CAS  PubMed  Google Scholar 

  33. Ahmed A, Moriguchi T, Salem N Jr (2002) Decrease in neuron size in DHA deficient brain. Pediatr Neurol 26:210–218

    Article  Google Scholar 

  34. Lin DS, Connors WE (1990) Are the n-3 FA from dietary fish oil deposited in the triglyceride stores of adipose tissue. Am J Clin Nutr 51:535–539

    CAS  PubMed  Google Scholar 

  35. Kajwara MOK, Imai S, Koboyashi T, Honma N, Maki T, Suruga K, Goda T, Takase S, Muto Y, Moriwaki H (1997) Perilla oil prevents excessive growth of visceral adipose tissue in rats by down regulating adipocyte differentiation. J Nutr 127:1752–1757

    Google Scholar 

  36. Abedin L, Lien E, Vingnys AJ, Sinclair AJ (1999) The effect of dietary alpha linolenic acid compared with docosahexaenoic acid on brain, retina, liver and heart in guinea pig. Lipids 34:475–482

    Article  CAS  PubMed  Google Scholar 

  37. Sinclair AJ (1975) Incorporation of radioactive polyunsaturated fatty acids into liver and brain of the developing rat. Lipids 10:175–184

    Article  CAS  PubMed  Google Scholar 

  38. Greiner RC, Winter J, Nathanielsz PV, Brenna JT (1997) Brain docosahexaenoate accretion in fetal baboons: bioequivalence of dietary alpha-linolenic acid and docosahexaenoic acid. Pediatr Res 42:826–834

    Article  CAS  PubMed  Google Scholar 

  39. Sinclair AJ, Attar Bash NM, Li D (2002) What is the role of alpha-linolenic acid for mammals. Lipids 37:1113–1123

    Article  CAS  PubMed  Google Scholar 

  40. Bourre JM, Dumont O, Pascal G, Durand G (1993) Dietary α-linolenic acid at 1.3 g/kg maintains docosahexaenoic acid concentration in brain, heart and liver of adult rats. J Nutr 123:1313–1319

    CAS  PubMed  Google Scholar 

  41. Hwang DH, Boudreau M, Chanmugam P (1988) Dietary linoleic acid and longer chain n-3 fatty acids: comparison of effects on arachidonic acid metabolism in rats. J Nutr 118:427–437

    CAS  PubMed  Google Scholar 

  42. Igarashi M, DeMar JC, Ma K, Chang L, Bell JM, Rapoport S (2007) Up regulated liver conversion of α-linolenic acid to docosahexaenoic acid in rats on a 15 week n-3 PUFA-deficient diet. J Lipid Res 48:152–164

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

T.R. Ramaprasad acknowledges a Senior Research Fellowship grant from the Council of Scientific and Industrial Research, New Delhi, India. The authors thank Dr. Visheweshwariah Prakash, Director, CFTRI for his suggestions in the manuscript preparation.

Conflict of interest

All authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Belur R. Lokesh.

About this article

Cite this article

Talahalli, R.R., Vallikannan, B., Sambaiah, K. et al. Lower Efficacy in the Utilization of Dietary ALA as Compared to Preformed EPA + DHA on Long Chain n-3 PUFA Levels in Rats. Lipids 45, 799–808 (2010). https://doi.org/10.1007/s11745-010-3464-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-010-3464-6

Keywords

Navigation