Skip to main content
Log in

Solubilization and Adsolubilization of Polar and Nonpolar Organic Solutes by Linker Molecules and Extended Surfactants

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

Adsolubilization reaches its maximum when a surfactant adsorbed onto the solid–liquid interface achieves complete bilayer or maximum adsorption. The attempt to enhance the adsolubilization of organic solute is accomplished by increasing interaction between the hydrophobic core of adsorbed admicelles and the organic solute. Solubilization and adsolubilization were studied with linker-based and extended-surfactant-based systems. Extended surfactants have propylene oxide (PO) groups of intermediate polarity inserted between hydrophobic and lipophilic moieties in the surfactant molecule. This study evaluated the adsolubilization of polar (phenylethanol) and nonpolar (ethylcyclohexane) solutes into conventional linker-based and extended-surfactant-based admicelles. The results demonstrated that the extended-surfactant-based systems showed higher solubilization capacity than the conventional sodium dodecyl sulfate alone or with linker. For the polar solute, the presence of PO group has a greater effect than the number of PO groups or the tail length, while for the nonpolar solute as the number of POs groups and the tail length increased, the adsolubilization capacity also increased. Preliminary explanations for these observations are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rosen MJ (1989) Surfactants and interfacial phenomena. Wiley, New York

    Google Scholar 

  2. West CC, Harwell JH (1992) Surfactants and subsurface remediation. Environ Sci Technol 26:2324

    Article  CAS  Google Scholar 

  3. Rouse JD, Sabatini DA, Harwell JH (1993) Minimizing surfactant losses using twin-head anionic surfactants in subsurface remediation. Environ Sci Technol 27:2072

    Article  CAS  Google Scholar 

  4. Nayyar SP, Sabatini DA, Harwell JH (1994) Surfactant adsolubilization and modified admicellar sorption of nonpolar, polar, and ionizable organic contaminants. Environ Sci Technol 28:1874

    Article  CAS  Google Scholar 

  5. Rouse JD, Sabatini DA, Deeds NE, Brown RE, Harwell JH (1995) Micellar solubilization of saturated hydrocarbon concentrations as evaluated by semi-equilibrium dialysis. Environ Sci Technol 29:2484

    Article  CAS  Google Scholar 

  6. Dickson J, O’Haver J (2002) Adsolubilization of naphthalene and naphthol in CTAB admicelles. Langmuir 18:1917

    Article  Google Scholar 

  7. Harwell JH, O’Rear EA (1989) Adsorbed surfactant bilayers as two-dimensional solvents (chapter 7). In: Scamehorn JF, Harwell JH (eds) Admicellar-enhanced chromatography. Marcel Dekker, New York, p 155

    Google Scholar 

  8. O’Haver JH, Lobban LL, Harwell JH, O’Rear EA (1995) Adsolubilization (chapter 8). In: Solubilization in surfactant aggregates. Christian SD, Scamehorn JF (eds) Marcel Dekker, New York, p 277

    Google Scholar 

  9. Kitiyanan B, O’Haver JH, Harwell JH, Osuwan S (1995) Adsolubilization of styrene and isoprene in cetyltrimethylammonium bromide admicelle on precipitated silica. Langmuir 12:2162

    Article  Google Scholar 

  10. Sun S, Jaffé PR (1996) Sorption of phenanthrene from water onto alumina coated with dianionic surfactants. Environ Sci Technol 30:2960

    Article  Google Scholar 

  11. Karapanagioti HK, Sabatini DA, Bowman RS (2005) Partitioning of hydrophobic organic chemicals (HOC) into anionic and cationic surfactant-modified sorbents. Water Res 39:699

    Article  CAS  Google Scholar 

  12. Adak A, Pal A (2006) Removal of phenol from aquatic environment by SDS-modified alumina: batch and fixed bed studies. Sep Purif Technol 50:256

    Article  CAS  Google Scholar 

  13. Adak A, Pal A, Bandyopadhyay M (2006) Removal of phenol from water environment by surfactant-modified alumina through adsolubilization. Colloids Surf A 277:63

    Article  CAS  Google Scholar 

  14. Fuangswasdi A, Krajangpan S, Sabatini DA, Acosta JE, Osathaphan K, Tongcumpou C (2007) Effect of admicellar properties on adsolubilization: column studies and solute transport. Water Res 41:1343

    Article  CAS  Google Scholar 

  15. Neupane D, Park J-W (1999) Binding of dealkylated disulfonated diphenyl oxide surfactant onto alumina in the aqueous phase. Chemosphere 38:1

    Article  CAS  Google Scholar 

  16. Esumi K, Maedomari N, Torigoe K (2000) Mixed surfactant adsolubilization of 2-naphthol on alumina. Langmuir 16:9217

    Article  CAS  Google Scholar 

  17. Esumi K (2001) Interactions between surfactants and particles: dispersion, surface modification, and adsolubilization. J Colloid Interface Sci 241:1

    Article  CAS  Google Scholar 

  18. Tan Y, O’Haver JH (2004) Lipophilic linker impact on adsorption of and styrene adsolubilization in polyethoxylated octylphenols. Colloid Surf A 232:101

    Article  CAS  Google Scholar 

  19. Fuangswasdi A, Charoensaeng A, Sabatini DA, Scamehorn JF, Acosta JE, Osathaphan K, Khaodhiar S (2006) Mixtures of anionic and cationic surfactants with single and twin head groups: adsorption and precipitation studies. J Surfactants Deterg 9:21

    Article  CAS  Google Scholar 

  20. Saphanuchart W, Saiwan C, O’Haver JH (2008) Temperature effects on adsolubilization of aromatic solutes partitioning to different regions in cationic admicelles. Colloid Surf A 317:303

    Article  CAS  Google Scholar 

  21. Edward DA, Luthy RG, Liu Z (1991) Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions. Environ Sci Technol 25:127

    Article  Google Scholar 

  22. Swe MM, Yu LE, Hung K, Chen B (2006) Solubilization of selected polycyclic aromatic compounds by nonionic surfactants. J Surfactants Deterg 9(3):237–244

    Article  CAS  Google Scholar 

  23. Salager JL, Graciaa A, Lanchaise J (1998) Improving solubilization in microemulsions with additives. Part III: lipophilic linker optimization. J Surfactants Deterg 1:3

    Article  Google Scholar 

  24. Acosta EJ, Harwell JH, Sabatini DA (2003) Self-assembly in linker-modified microemulsions. J Colloid Interface Sci 274:652

    Article  Google Scholar 

  25. Salager JL, Anton RE, Sabatini DA, Harwell JH, Acosta EJ, Tolosa LI (2005) Enhancing solubilization in microemulsions-state of the art and current trends. J Surfactants Deterg 8:1

    Article  Google Scholar 

  26. Szekeres E, Acosta E, Sabatini DA, Harwell JH (2005) Preferential solubilization of dodecanol from dodecanol–limonene binary oil mixture in sodium dihexyl sulfosuccinate microemulsions: effect on optimum salinity and oil solubilization capacity. J Colloid Interface Sci 287:273

    Article  CAS  Google Scholar 

  27. Miñana-Perez M, Graciaa A, Lachaise J, Salager J (1995) Solubilization of polar oils with extended surfactants. Colloid Surf A 100:217

    Article  Google Scholar 

  28. Jayanti S, Britton LN, Dwarakanath V, Pope GA (2002) Laboratory evaluation of custom-designed surfactants to remediate NAPL source zones. Environ Sci Technol 36:5491

    Article  CAS  Google Scholar 

  29. Sabatini DA, Acosta E, Harwell JH (2003) Linker molecules in surfactant mixtures. J Colloid Interface Sci 8:316

    Article  CAS  Google Scholar 

  30. Fernández A, Scorzza C, Usubillaga A, Salager JL (2005) Synthesis of new extended surfactant containing a carboxylate or sulfate polar group. J Surfactants Deterg 8:187

    Article  Google Scholar 

  31. Childs J, Acosta E, Annable MD, Brooks MC, Enfield CG, Harwell JH, Hasegawa M, Knox RC, Rao PC, Sabatini DA et al (2006) Field demonstration of surfactant-enhanced solubilization of DNAPL at Dover Air Force Base, Delaware. J Contam Hydrol 82:1

    Article  CAS  Google Scholar 

  32. Fernández A, Scorzza C, Usubillaga A, Salager JL (2005) Synthesis of new extended surfactant containing a xylitol polar group. J Surfactants Deterg 8:193

    Article  Google Scholar 

  33. Witthayapanyanon A, Acosta EJ, Harwell JH, Sabatini DA (2006) Formulation of ultralow interfacial tension systems using extended surfactants. J Surfactants Deterg 9:331

    Article  CAS  Google Scholar 

  34. Charoensaeng A, Khaodhiar S, Sabatini DA (2008) Styrene solubilization and adsolubilization on an aluminum oxide surface using linker molecules and extended surfactants. J Surfactants Deterg 11:61

    Article  CAS  Google Scholar 

  35. Doan T, Acosta E, Scamehorn JF, Sabatini DA (2003) Formulating middle-phase microemulsions using mixed anionic and cationic surfactant systems. J Surfactants Deterg 6:215

    Article  Google Scholar 

  36. Pongprayoon T, Yanumet N, O’Rear EA (2002) Admicellar polymerization of styrene on cotton. J Colloid Interface Sci 249:227

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for this work was provided by the National Center of Excellent for Environmental and Hazardous Waste Management (NCE-EHWM), Chulalongkorn University, Thailand. In addition, financial support for this research was received from the 90th Year Anniversary of Chulalongkorn University (Ratchadphiseksomphot Endowment Fund), Chulalongkorn University, Thailand. In additional, financial support for this research was received from the industrial sponsors of the IASR, University of Oklahoma, including Akzo Noble, Clorox, Conoco/Phillips, Church & Dwigth, Ecolab, Halliburton, Dow Chemical, Huntsman, Oxiteno, Procter & Gamble, Sasol and Shell. Finally, funds from the Sun Oil Company Chair (D.A. Sabatini) at the University of Oklahoma helped support this research. We thank Geoff Russell from SASOL Company for providing us with the extended surfactants samples for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sutha Khaodhiar.

About this article

Cite this article

Charoensaeng, A., Sabatini, D.A. & Khaodhiar, S. Solubilization and Adsolubilization of Polar and Nonpolar Organic Solutes by Linker Molecules and Extended Surfactants. J Surfact Deterg 12, 209–217 (2009). https://doi.org/10.1007/s11743-009-1113-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-009-1113-y

Keywords

Navigation