Skip to main content
Log in

Styrene Solubilization and Adsolubilization on an Aluminum Oxide Surface Using Linker Molecules and Extended Surfactants

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

The impact of lipophilic linker and extended surfactant properties on admicelle formation and styrene adsolubilization were evaluated through adsorption and adsolubilization studies on aluminum oxide. While linker-based systems achieved a higher maximum adsorption than extended surfactants, the extended surfactants reached maximum adsorption at a lower aqueous surfactant concentration. Results of solubilization and adsolubilization studies are summarized by the extent of solute solubilization into micelles and admicelles, as captured through the micellar partition coefficient, K mic, and the admicellar partition coefficient, K adm. The extended-surfactant-based micelles showed greater solubilization capacity than linker-based micelles. Relative to the effect of the number of propoxy groups for extended surfactants with the same alkyl chain length, the results show that the solubilization capacity increases when the PO number increases for both C12,13- and C14,15-based surfactant series. Thus, adsolubilization using extended-surfactant-based admicelles showed adsolubilization enhancement but required lower amounts of surfactants to form admicelles. These results thus provide insights into external and internal linker-based and extended-surfactant-based admicellar systems and highlight the differences observed between them and admicelles based on conventional surfactant systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. West CC, Harwell JH (1992) Surfactants and subsurface remediation. Environ Sci Technol 26:2324

    Article  CAS  Google Scholar 

  2. Nayyar SP, Sabatini DA, Harwell JH (1994) Surfactant adsolubilization and modified admicellar sorption of nonpolar, polar, and ionizable organic contaminants. Environ Sci Technol 28:1874

    Article  CAS  Google Scholar 

  3. Kitiyanan B, O’Haver JH, Harwell JH, Osuwan S (1995) Adsolubilization of styrene and isoprene in cetyltrimethylammonium bromide admicelle on precipitated silica. Langmuir 12:2162

    Article  Google Scholar 

  4. Sun S, Jaffe PR (1996) Sorption of phenanthrene from water onto alumina coated with dianionic surfactants. Environ Sci Technol 30:2960

    Article  Google Scholar 

  5. Karapanagioti HK, Sabatini DA, Bowman RS (2005) Partitioning of hydrophobic organic chemicals (HOC) into anionic and cationic surfactant-modified sorbents. Water Res 39:699

    Article  CAS  Google Scholar 

  6. Adak A, Pal A (2006) Removal of phenol from aquatic environment by SDS-modified alumina: batch and fixed bed studies. Sep Purif Technol 50:256

    Article  CAS  Google Scholar 

  7. Adak A, Pal A, Bandyopadhyay M (2006) Removal of phenol from water environment by surfactant-modified alumina through adsolubilization. Colloids Surf A 277:63

    Google Scholar 

  8. Scamehorn JF, Harwell JH (1989) Surfactants-based separation processes. Surfactant Sci Ser 33:155

    Google Scholar 

  9. O’Haver JH, Lobban LL, Harwell JH, O’Rear EA (1995) Adsolubilization. In: Christian SD, Scamehorn JF (eds) Solubilization in surfactant aggregates. Marcel Dekker, New York, Chap 8, p 277

  10. Harwell JH, O’Rear EA (1989) Adsorbed surfactant bilayers as two-dimensional solvents. In: Scamehorn JF, Harwell JH (eds) Admicellar-enhanced chromatography. Marcel Dekker, New York, Chap 7, p 155

  11. Fuangsawasdi A, Krajangpan S, Sabatini DA, Acosta JE, Osathaphan K, Tongcumpou C (2007) Effect of admicellar properties on adsolubilization: column studies and solute transport. Water Res 41:1343

    Article  Google Scholar 

  12. Rosen MJ (1989) Surfactants and interfacial phenomena. Wiley, New York

    Google Scholar 

  13. Somasundaran P, Fuerstrnsu DW (1966) Mechanism of alkyl sulfonate adsorption at the alumina–water interface. J Phys Chem 70:90–96

    Google Scholar 

  14. Scamehorn JF, Schechter RS, Wade WH (1982) Adsorption of surfactants on mineral oxide surfaces from aqueous solutions: I: Isomerically pure anionic surfactants. J Colloid Interface Sci 85:463

    Google Scholar 

  15. Dickson J, O’ Haver J (2002) Adsolubilization of naphthalene and naphthol in CTAB admicelles. Langmuir 18:1917

    Article  Google Scholar 

  16. Harwell JH, Scamehorn JF (1993) Adsorption of mixed surfactant systems. In: Ogino K, Abe M (eds) Mixed surfactant systems. Marcel Dekker, New York, Chap 9, p 263

  17. Lopata JJ (1988) A study of the adsorption of binary anionic surfactant mixtures on alpha alumina oxide. Masters Thesis, Department of Chemical Engineering, University of Oklahoma

  18. Fuangsawasdi A, Charoensaeng A, Sabatini DA, Scamehorn JF, Acosta JE, Osathaphan K, Khaodhiar S (2006) Mixtures of anionic and cationic surfactants with single and twin head groups: adsorption and precipitation studies. J Surfactants Deterg 9:21

    Google Scholar 

  19. Fuangsawasdi A, Charoensaeng A, Sabatini DA, Scamehorn JF, Acosta JE, Osathaphan K, Khaodhiar S (2006) Mixtures of anionic and cationic surfactants with single and twin head groups: solubilization and adsolubilization of styrene and ethylcyclohexane. J Surfactants Deterg 9:21

    Google Scholar 

  20. Tan Y, O’Haver JH (2004) Lipophilic linker impact on adsorption of and styrene adsolubilization in polyethoxylated octylphenols. Colloid Surf A 232:101

    Article  CAS  Google Scholar 

  21. Doan T, Acosta E, Scamehorn JF, Sabatini DA (2003) Formulating middle-phase microemulsions using mixed anionic and cationic surfactant systems. J Surfactants Deterg 6:215

    Article  Google Scholar 

  22. Huang Z, Yan Z, Gu T (1989) Mixed adsorption of cationic and anionic surfactants from aqueous solution on silica gel. Colloids Surf 36:353

    Article  CAS  Google Scholar 

  23. Capovilla L, Labbe P, Reverdy G (1991) Formation of cationic/anionic mixed surfactant bilayers on laponite clay suspensions. Langmuir 7:2000

    Article  CAS  Google Scholar 

  24. Edward DA, Luthy RG, Liu Z (1991) Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions. Environ Sci Technol 25:127

    Article  Google Scholar 

  25. Rouse JD, Sabatini DA, Harwell JH (1993) Minimizing surfactant losses using twin-head anionic surfactants in subsurface remediation. Environ Sci Technol 27:2072

    Article  CAS  Google Scholar 

  26. Esumi K (2001) Interactions between surfactants and particles: dispersion, surface modification, and adsolubilization. J Colloid Interface Sci 241:1

    Article  CAS  Google Scholar 

  27. Esumi K, Maedomari N, Torigoe K (2000) Mixed surfactant adsolubilization of 2-naphthol on alumina. Langmuir 16:9217

    Article  CAS  Google Scholar 

  28. Neupane D, Park J-W (1999) Binding of dealkylated disulfonated diphenyl oxide surfactant onto alumina in the aqueous phase. Chemosophere 38:1

    Article  CAS  Google Scholar 

  29. Sabatini DA, Acosta E, Harwell JH (2003) Linker molecules in surfactant mixtures. J Colloid Interface Sci 8:316

    Article  CAS  Google Scholar 

  30. Acosta EJ, Harwell JH, Sabatini DA (2003) Self-assembly in linker-modified microemulsions. J Colloid Interface Sci 274:652

    Article  Google Scholar 

  31. Szekeres E, Acosta E, Sabatini DA, Harwell JH (2005) Preferential solubilization of dodecanol from dodecanol-limonene binary oil mixture in sodium dihexyl sulfosuccinate microemulsions: effect on optimum salinity and oil solubilization capacity. J Colloid Interface Sci 287:273

    Article  CAS  Google Scholar 

  32. Miñana-Perez M, Graciaa A, Lachaise J, Salager J (1995) Solubilization of polar oils with extended surfactants. Colloid Surf A 100:217

    Article  Google Scholar 

  33. Jayanti S, Britton LN, Dwarakanath V, Pope GA (2002) Laboratory evaluation of custom-designed surfactants to remediate NAPL source zones. Environ Sci Technol 36:5491

    Article  CAS  Google Scholar 

  34. Childs J, Acosta E, Annable MD, Brooks MC, Enfield CG, Harwell JH, Hasegawa M, Knox RC, Rao PC, Sabatini DA et al. (2006) Field demonstration of surfactant-enhanced solubilization of DNAPL at Dover Air Force Base, Delaware. J Contam Hydrol 82:1

    Google Scholar 

  35. Graciaa A, Lachaise J, Cucuphat C, Bourrel M, Salager JL (1993) Improving solubilization in microemulsions with additives: 1. The lipophilic linker role. Langmuir 9:669

    Article  CAS  Google Scholar 

  36. Graciaa A, Lachaise J, Cucuphat C, Bourrel M, Salager JL (1993) Improving solubilization in microemulsions with additives. 2. Long chain alcohols as lipophilic linkers. Langmuir 9:3371

    Article  CAS  Google Scholar 

  37. Fernández A., Scorzza C, Usubillaga A, Salager JL (2005) Synthesis of new extended surfactant containing a carboxylate or sulfate polar group. J Surfactants Deterg 8:187

    Google Scholar 

  38. Fernández A., Scorzza C, Usubillaga A, Salager JL (2005) Synthesis of new extended surfactant containing a xylitol polar group. J Surfactants Deterg 8:193

    Google Scholar 

  39. Witthayapanyanon A, Acosta EJ, Harwell JH, Sabatini DA (2006) Formulation of ultralow interfacial tension systems using extended surfactants. J Surfactants Deterg 9:331

    Article  CAS  Google Scholar 

  40. Rouse JD, Sabatini DA, Deeds NE et al. (1995) Micellar solubilization of saturated hydrocarbon concentrations as evaluated by semiequilibrium dialysis. Environ Sci Technol 29:2484

    Google Scholar 

Download references

Acknowledgment

Financial support for this work was provided by National Center of Excellence for Environmental and Hazardous Waste Management (NCE-EHWM), Chulalongkorn University, Thailand. In addition, financial support for this research was received from The 90th Years Anniversary of Chulalongkorn University (Ratchadphiseksomphot Endowment Fund), Chulalongkorn University, Thailand. Financial support for this research was also received from the industrial sponsors of the IASR, University of Oklahoma, including Akzo Noble, Clorox, Conoco/Phillips, Church & Dwight, Ecolab, Halliburton, Huntsman, Oxiteno, Procter & Gamble, Sasol, Shell and Unilever. Finally, funds from the Sun Oil Company Chair (DAS) at the University of Oklahoma helped support this research. We thank Geoff Russell from SASOL Company for providing us with the extended surfactants samples for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sutha Khaodhiar.

About this article

Cite this article

Charoensaeng, A., Sabatini, D.A. & Khaodhiar, S. Styrene Solubilization and Adsolubilization on an Aluminum Oxide Surface Using Linker Molecules and Extended Surfactants. J Surfact Deterg 11, 61–71 (2008). https://doi.org/10.1007/s11743-007-1055-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-007-1055-1

Keywords

Navigation