Skip to main content
Log in

Investigating deleterious effects of ultraviolet (UV) radiations on wheat by a quick method

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Increasing air pollution has resulted in ozone depletion, which has led to an increase in the amount of ultraviolet (UV) radiation reaching the surface of earth posing hazardous effects on the plant yield. The chlorophyll a fluorescence transients were recorded in vivo using plant efficiency analyzer and analyzed according to JIP test, which can monitor photosystem II (PSII) behavior. This study aims to evaluate the sensitivity of different components of PSII to UV radiations and the extent of damage caused when wheat plants were exposed to UV radiations for 2 and 4 h. It was observed that functional disconnection of light harvesting complexes from PSII complex, accumulation of inactive reaction center, inactivation of oxygen evolving complex, and thus the linear electron transport process (ET0/CS), were drastically affected by UV radiations. This study will contribute to understanding of the basic photosynthetic mechanisms affected in crop plants due to increased UV radiations. The knowledge obtained will be relevant for environmental and plant scientists to plan strategies to cope with stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ABS:

Absorption

Chl a :

Chlorophyll a

CS:

Cross section

DIo :

Dissipation

ET0 :

Electron transport

F 0 :

Initial fluorescence

F m :

Maximum fluorescence

F v :

Variable fluorescence

LHC:

Light harvesting complexes

OEC:

Oxygen evolving complex

OJ, JI, IP:

Phases of fluorescence induction curve

PEA:

Plant efficiency analyzer

PSI:

Photosystem I

PSII:

Photosystem II

PQ:

Plastoquinone

PQH2 :

Plastoquinol

RC:

Reaction center

\(Q_{{{\text{A}}^{ - } }}\) :

Reduced primary quinone acceptor of PS II

Q B :

Secondary quinone acceptor of PS II

TRo :

Trapping

UV:

Ultraviolet

References

  • Albert KR, Mikkelsen TN, Ro-Poulsen H, Arndal MF, Michelsen A (2011) Ambient UV radiation reduces PSII performance and net photosynthesis in high Arctic Salix arctica. Environ Exp Bot 73:10–18

    Article  CAS  Google Scholar 

  • Appenroth KJ, Stockel J, Srivastava A, Strasser RJ (2001) Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements. Environ Pollut 115:49–64

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51(2):163–190

    Article  CAS  Google Scholar 

  • Brestic M, Zivcak M, Kunderlikova K, Sytar O, Shao H, Kalaji HM, Allakhverdiev SI (2015) Low PSI content limits the photoprotection of PSI and PSII in early growth stages of chlorophyll b-deficient wheat mutant lines. Photosynth Res. doi:10.1007/s11120-015-0093-1

    Google Scholar 

  • Chen LS, Cheng L (2009) Photosystem 2 is more tolerant to high temperature in apple (Malus domestica Borkh.) leaves than in fruit peel. Photosynthetica 47(1):112–120

    Article  CAS  Google Scholar 

  • Christen D, Schőnmanna S, Jermini M, Strasser RJ, Defago G (2007) Characterization and early detection of grapevine (Vitis vinifera) stress responses to esca disease by in situ chlorophyll fluorescence and comparison with drought stress. Environ Exp Bot 60:504–514

    Article  CAS  Google Scholar 

  • Dudeja SS, Chaudhary P (2005) Fast chlorophyll fluorescence transient and nitrogen fixing ability of chickpea nodulation variants. Photosynthetica 43(2):253–259

    Article  CAS  Google Scholar 

  • Essemine J, Govindachary S, Ammar S, Bouzid S, Carpentier R (2012) Enhanced sensitivity of the photosynthetic apparatus to heat stress in digalactosyl-diacylglycerol deficient Arabidopsis. Environ Exp Bot 80:16–26

    Article  CAS  Google Scholar 

  • Fagerberg WR, Bornman JF (2005) Modification of leaf cytology and anatomy in Brassica napus grown under above ambient levels of supplemental UV radiation. Photochem Photobiol Sci 4:275–279

    Article  CAS  PubMed  Google Scholar 

  • Guidi L, Mori S, Degl’Innocenti E, Pecchia S (2007) Effects of ozone exposure or fungal pathogen on white lupin leaves as determined by imaging of chlorophyll a fluorescence. Plant Physiol Biochem 45:851–857

    Article  CAS  PubMed  Google Scholar 

  • Guo DP, Guo YP, Zhao JP, Hui L, Peng Y, Wang QM, Chen JS, Rao GZ (2005) Photosynthetic rate and chlorophyll fluorescence in leaves of stem mustard (Brassica juncea var. tsatsai) after turnip mosaic virus infection. Plant Sci 168:57–63

    Article  CAS  Google Scholar 

  • Hectors K, Jacques E, Prinsen E, Guisez Y, Verbelen JP, Jansen MAK, Vissenberg K (2010) UV radiation reduces epidermal cell expansion in leaves of Arabidopsis thaliana. J Exp Bot 61:4339–4349

    Article  CAS  PubMed  Google Scholar 

  • Hollosy F (2002) Effect of UV radiation on plant cells. Micron 33:179–197

    Article  CAS  PubMed  Google Scholar 

  • Holzinger A, Lütz C, Karsten U, Wiencke C (2004) The effect of ultraviolet radiation on ultrastructure and photosynthesis in the red macroalgae Palmaria palmata and Odonthalia dentate from Arctic waters. Plant Biol 6:568–577

    Article  CAS  PubMed  Google Scholar 

  • Holzinger A, Karsten U, Lütz C, Wiencke C (2006) Ultrastructure and photosynthesis in the supralittoral green macroalga Prasiola crispa from Spitsbergen (Norway) under UV exposure. Phycologia 45:168–177

    Article  Google Scholar 

  • Hui R, Li XR, Jia RL, Liu LC, Zhao RM, Zhao X, Wei YP (2014) Photosynthesis of two moss crusts from the Tengger Desert with contrasting sensitivity to supplementary UV radiation. Photosynthetica 52(1):36–49

    Article  CAS  Google Scholar 

  • Kalaji HM, Loboda T (2007) Photosystem II of barley seedlings under cadmium and lead stress. Plant Soil Environ 53(12):511–516

    CAS  Google Scholar 

  • Kalaji HM, Carpentier R, Allakhverdiev SI, Bosa K (2012) Fluorescence parameters as early indicators of light stress in barley. J Photochem Photobiol B Biol 112:1–6

    Article  CAS  Google Scholar 

  • Kalaji HM, Schansker G, Ladle RJ, Goltsev V, Bosa K, Allakhverdiev SI, Brestic M, Bussotti F, Calatayud A, Da Browski P, Elsheery NI, Ferroni L, Guidi L, Hogewoning SW, Jajoo A, Misra AN, Nebauer SG, Pancaldi S, Penella C, Poli DB, Pollastrini M, Romanowska-Duda ZB, Rutkowska B, Serodio J, Suresh K, Szulc W, Tambussi E, Yanniccari M, Zivcak M (2014a) Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. Photosynth Res 122(2):121–158

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kalaji HM, Jajoo A, Oukarroum A, Mrestic B, Zivcak M, Samborska IA, Cetner DM, Lukasik I, Goltsev V, Ladle RJ, Dabrowski P, Ahmad P (2014b) The use of Chlorophyll fluorescence kinetics analysis to study the performance of photosynthetic machinery in plants. In: Ahmad P (ed) Emerging technologies and management of crop stress tolerance, Elsevier Academic press, pp 347–384

  • Kataria S, Jajoo A, Guruprasad KN (2014) Impact of increasing Ultraviolet-B (UV-B) radiation on photosynthetic processes. J Photochem Photobiol B Biol 137:55–66

    Article  CAS  Google Scholar 

  • Koscielniak J, Ostrowska A, Biesaga-Koscielniak J, Filek W, Janeczko A, Kalaji HM, Stalmach K (2011) The effect of zearalenone on PSII photochemical activity and growth in wheat and soybean under salt (NaCl) stress. Acta Physiol Plant 33:2329–2338

    Article  Google Scholar 

  • Kruger GHJ, Tsimilli-Michael M, Strasser RJ (1997) Light stress provokes plastic and elastic modifications in structure and function of photosystem II in camellia leaves. Physiol Plant 101:265–277

    Article  CAS  Google Scholar 

  • Kulandaivelu G, Nedunchezhian N, Annamalainathan K (1983) Ultra-violet-B (280-435 320) radiation induced changes in photochemical activities and polypeptide components of C3 and C4 chloroplasts. Photosynthetica 25:12–14

    Google Scholar 

  • Lidon FJC, Reboredo FH, Leitã AE, Silva MMA, Duarte MP, Ramalho JC (2012) Impact of UV radiation on photosynthesis—an overview. Emir J Food Agric 24(6):546–556

    Article  Google Scholar 

  • Mathur S, Allakhverdiev SI, Jajoo A (2011a) Analysis of high temperature stress on the dynamics of antenna size and reducing side heterogeneity of Photosystem II in wheat leaves (Triticum aestivum). Biochim Biophys Acta 1807:22–29

    Article  CAS  PubMed  Google Scholar 

  • Mathur S, Jajoo A, Mehta P, Bharti S (2011b) Analysis of elevated temperature-induced inhibition of photosystem II by using chlorophyll a fluorescence induction kinetics in wheat leaves (Triticum aestivum). Plant Biol 13:1–6

    Article  CAS  PubMed  Google Scholar 

  • Mathur S, Mehta P, Jajoo A (2012) Effects of dual stress (high salt and high temperature) on the photochemical efficiency of wheat leaves (Triticum aestivum). Physiol Mol Biol Plants. doi:10.1007/s12298-012-0151-5

    PubMed Central  Google Scholar 

  • Mathur S, Agrawal D, Jajoo A (2014) Photosynthesis: response to high temperature stress. J Photochem Photobiol B Biol 137:116–126

    Article  CAS  Google Scholar 

  • Mehta P, Jajoo A, Mathur S, Bharti S (2010) Chlorophyll a fluorescence study revealing effects of high salt stress on photosystem II in wheat leaves. Plant Physiol Biochem 48:16–20

    Article  CAS  PubMed  Google Scholar 

  • Pradhan MK, Nayak L, Joshi PN, Mohapatra PK, Patro L, Biswal B, Biswal UC (2008) Developmental phase-dependent photosynthetic responses to ultraviolet-B radiation: damage, defence, and adaptation of primary leaves of wheat seedlings. Photosynthetica 46(3):370–377

    Article  CAS  Google Scholar 

  • Randi AM, Freitas MCA, Rodrigues AC, Maraschin M, Torres MA (2014) Acclimation and photoprotection of young gametophytes of Acrostichum Danaeifolium to UV stress. Photosynthetica 52(1):50–56

    Article  CAS  Google Scholar 

  • Srivastava A, Guisse B, Greppin H, Strasser RJ (1997) Regulation of antenna structure and electron transport in photosystem II of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: OKJIP. Biochim Biophys Acta 320:95–106

    Article  Google Scholar 

  • Srivastava A, Strasser RJ, Govindjee (1999) Greening of peas: parallel measurements of 77 K emission spectra, O-J-I-P chlorophyll a fluorescence transient, period four oscillation of the initial fluorescence level, delayed light emission, and P700. Photosynthetica 37:365–392

    Article  CAS  Google Scholar 

  • Strasser RJ, Srivastava A, Tsimilli-Michael M (2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P (eds) Probing photosynthesis: mechanisms, regulation and adaptation. Taylor and Francis, London, pp 445–483

    Google Scholar 

  • Tomar RS, Jajoo A (2013) A quick investigation of the detrimental effects of environmental pollutant polycyclic aromatic hydrocarbon fluoranthene on the photosynthetic efficiency of wheat (Triticum aestivum). Ecotoxicology 22:1313–1318

    Article  PubMed  Google Scholar 

  • Tomar RS, Jajoo A (2014) Fluoranthene, a polycyclic aromatic hydrocarbon, inhibits light as well as dark reactions of photosynthesis in wheat (Triticum aestivum). Ecotoxicol Environ Saf 109:110–115

    Article  CAS  PubMed  Google Scholar 

  • Yamane Y, Shikanai T, Kashino Y, Koike H, Satoh K (2000) Reduction of QA in the dark: another cause of fluorescence F0 increases by high temperatures in higher plants. Photosynth Res 63:23–34

    Article  CAS  PubMed  Google Scholar 

  • Yan K, Chen P, Shao H, Shao C, Zhao S, Brestic M (2013) Dissection of photosynthetic electron transport process in sweet sorghum under heat stress. PLoS One 8(5):e62100. doi:10.1371/journal.pone.0062100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zivcak M, Brestic M, Kalaji HM, Govindjee (2014) Photosynthetic responses of sun- and shade-grown barley leaves to high light: is the lower PSII connectivity in shade leaves associated with protection against excess of light? Photosynth Res 119:339–354

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zlatev ZS, Lidon Fernando JC, Kaimakanova M (2012) Plant physiological responses to UV radiation. Emir J Food Agric 24(6):481–501

    Article  Google Scholar 

Download references

Acknowledgments

SM thanks University Grant Commission, (UGC), India for Post Doctoral Fellowship for Women (PDFWM-2014-15-GEMAD-23945). AJ thanks DST for the project (DST/RUS/RFBR/P-173). We are also thankful to Prof. R.J. Strasser and Ronaldo Maldonado-Rodriguez for gifting Biolyzer HP 3 Software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjana Jajoo.

Additional information

Communicated by Z. Miszalski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathur, S., Jajoo, A. Investigating deleterious effects of ultraviolet (UV) radiations on wheat by a quick method. Acta Physiol Plant 37, 121 (2015). https://doi.org/10.1007/s11738-015-1874-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-015-1874-z

Keywords

Navigation